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Construction of some countable 1-arc-transitive bipartite graphs
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Abstract

We generalize earlier work which gave a method of construction for bipartite graphs which are obtained as the set of maximal
or minimal elements of a certain cycle-free partial order. The method is extended here to produce a 1-arc-transitive bipartite graph
in a ‘free’ way, starting with any partial order with greatest and least element and with instructions on its points about how they
will ramify in the extension. A key feature of our work is the interplay between properties of the initial partial order, the extended
partial order, and the bipartite graph which results. We also extend the earlier work by giving a complete characterization of all
2-C S-transitive cycle-free partial orders. In addition, we discuss the completeness of the constructed partial orders, in the sense of
Dedekind and MacNeille, and remark that the bipartite graph constructed can only be 2-arc-transitive in the cycle-free case.
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1. Introduction and preliminaries

The notion of a cycle-free partial order (CFPO) was originally proposed by Rubin in [9] and later redefined slightly
and extensively developed by Warren in [14]. Since then a number of other papers on the subject have appeared [3,6,
11–13]. It was observed in [14] that a large class of interesting CFPOs are in fact two-level partial orders and so can
be thought of in a natural way as bipartite graphs. See Theorem 2 below.

Let M = (M,≤) be a partially ordered set, also called a poset. We write x ‖ y to mean that x and y are
incomparable. Given a subset X of M we let

∨M X = {a ∈ M : a ≥ X} and
∧M X = {a ∈ M : a ≤ X},

where a ≥ X means that (∀x ∈ X) a ≥ x . A subset I of M is a Dedekind ideal (or just ideal) of M , written
I ∈ I D(M), if I 6= ∅,

∨M I 6= ∅, and
∧M ∨M I = I . Given any m ∈ M we let PI(m) = {x ∈ M : x ≤ m},

noting that PI(m) is an ideal of M . We call PI(m) the principal ideal generated by m. We say an ideal I is principal if
I = PI(m) for some m ∈ M . Dually we use PF(m) to denote the principal filter generated by m. A poset is then said
to be Dedekind–MacNeille complete (D–M complete) if every ideal is principal. A Dedekind–MacNeille complete
poset has the property that whenever two elements have a lower bound, they have an infimum, and whenever they
have an upper bound they have a supremum.

The Dedekind–MacNeille completion of M , written M D , is defined to be the partial order with domain I D(M)
ordered by inclusion. The partial order M can be embedded into M D in a natural way (mapping elements to the
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principal ideals that they generate). It can be shown that the poset M D is the least extension of M which is D–M
complete.

Definition 1. Let M be a partial order, and let a, b ∈ M . Let C = (c0, c1, . . . , cn) be a sequence of points of M such
that c0 = a, cn = b and ci is comparable with ci+1 for each i < n. Let σk (with 0 ≤ k < n) be maximal chains in
M D with endpoints ck, ck+1 ∈ σk such that if x ∈ σi ∩ σ j for some i < j , then j = i + 1 and x = ci+1. Then we say
that

⋃
k<n σk is a path from a to b in M .

The poset M is said to be connected if between any two points of M there is, in M D , at least one path, and it
is cycle-free if between any two points of M there is, in M D , a unique path. The poset M is k-C S-transitive if for
any two isomorphic connected substructures of M of size k there is an automorphism of M taking the first to the
second, and k-C S-homogeneous if any isomorphism between two connected substructures of M of size k extends to
an automorphism.

The full classification of k-C S-transitive CFPOs (for k ≥ 3) is essentially complete. The only place where the
classification is still not completely explicit is for the case that a certain poset ALT does not embed and k ≥ 5;
see [12]. For a reasonably detailed summary of the classification we refer the reader to [6, Section 3].

The connection between CFPOs and graphs is given by the following result, which we refer to as the bipartite
theorem.

Theorem 2 ([14, Theorem 3.4.2]). Let M be an infinite CFPO all of whose chains are finite. If M is k-C S-transitive
for some k ≥ 2 and C is a maximal chain in M, then |C | = 2.

Note that if M has finite chains it does not necessarily follow that the completion M D has finite chains. It follows
from the above result that finite chain CFPOs can be thought of both as partial orders and as bipartite graphs.

A graph is vertex transitive if its automorphism group acts transitively on the set of vertices, and is edge transitive if
its automorphism group acts transitively on the set of edges of the graph. An s-arc in a graph is a sequence v1, . . . , vs
of vertices such that vi is adjacent to vi+1 for all 1 ≤ i ≤ s − 1, and v j 6= v j+2 for 1 ≤ j ≤ s − 2. A graph
is s-arc-transitive if its automorphism group acts transitively on s-arcs. Clearly if a graph is 1-arc-transitive then it
is edge transitive, but the converse is not true in general. For more background on these notions we refer the reader
to [8, Chapters 3 and 4]. Let M be a poset with maximal chains of length 2, and let Γ (M) be the corresponding
bipartite graph. Clearly M is 2-C S-transitive if and only if Γ (M) is edge transitive. If in addition, there is an anti-
isomorphism of (M,≤) interchanging the maximal and minimal points of M then Γ (M) is arc-transitive. There is a
similar relationship between 2-arc-transitivity in Γ (M) and 3-C S-homogeneity in M .

One question arising from the work on CFPOs described above is to what extent this approach may be used in
the investigation of countable k-arc-transitive graphs for k ≥ 1. Given a countable k-arc-transitive bipartite graph
we can, by defining one part of the bipartition to be above the other and so viewing it as a partial order, construct
its D–M completion. Since the graph is 1-arc-transitive it follows that in the completion all the maximal intervals
are isomorphic to some fixed interval I . Here by an interval we mean a poset I with elements x, y ∈ I such that
x ≤ I ≤ y. Thus, associated with any k-arc-transitive bipartite graph is such an interval, and the completion is
constructed by gluing these together in a certain way. For example, if Γ is one of the CFPO bipartite graphs then this
interval is a linear order. Conversely in [14, Chapter 4] it is shown exactly how these chains may be glued together
to obtain CFPOs. Of course, many non-CFPOs will also give rise to linear orders as their intervals. For example,
if Γ (thought of as a two-level poset) is already complete, the associated interval will just be a two-element chain.
This happens for instance if the bipartite graph arises as the incidence graph of a generalized quadrangle. For lots of
examples of this kind (i.e. continuum many) we refer the reader to [10]. From this is seems that there is not much
hope of a classification of bipartite graphs whose completions have chain intervals. This demonstrates that it is not the
fact that the intervals in the completion are chains that makes the class of CFPOs accessible; it is the simple way in
which the intervals are glued together that is important. Here we investigate what happens when we allow the maximal
intervals I in M D to be something other than a chain, and our aim here is to give constructions of partial orders of this
kind.

Given an interval P (a poset with a maximal and minimal element), and two functions ρu and ρd (each with
domain P and range N ∪ {ℵ0}) which we call upward and downward ramification functions, we want to construct a
countable connected bipartite graph that is, at least, edge transitive and when viewed as a partial order Q, has intervals
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