

Available online at www.sciencedirect.com

DISCRETE MATHEMATICS

Discrete Mathematics 308 (2008) 6513-6526

www.elsevier.com/locate/disc

On arc-traceable local tournaments

Dirk Meierling*, Lutz Volkmann

Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany

Received 3 January 2005; received in revised form 11 December 2007; accepted 13 December 2007 Available online 31 January 2008

Abstract

A digraph D is *arc-traceable* if for every arc xy of D, the arc xy belongs to a directed Hamiltonian path of D. A *local tournament* is an oriented graph such that the negative neighborhood as well as the positive neighborhood of every vertex induces a tournament. It is well known that every tournament contains a directed Hamiltonian path and, in 1990, Bang-Jensen showed the same for connected local tournaments. In 2006, Busch, Jacobson and Reid studied the structure of tournaments that are not arc-traceable and consequently gave various sufficient conditions for tournaments to be arc-traceable. Inspired by the article of Busch, Jacobson and Reid, we develop in this paper the structure necessary for a local tournament to be not arc-traceable. Using this structure, we give sufficient conditions for a local tournament to be arc-traceable and we present examples showing that these conditions are best possible.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Arc-traceable; Hamiltonian path; Local tournaments

1. Terminology and introduction

For a digraph D, we denote by V(D) and E(D) the vertex set and arc set of D, respectively. The number |V(D)| is the order of the digraph D. The subdigraph induced by a subset A of V(D) is denoted by D[A].

If $xy \in E(D)$, then y is a positive neighbor or out-neighbor of x and x is a negative neighbor or in-neighbor of y, and we also say that x dominates y and that y is dominated by x, denoted by $x \to y$. More generally, if A and B are two disjoint subdigraphs of a digraph D such that every vertex of A dominates every vertex of B, then we say that A dominates B and that B is dominated by A, denoted by $A \to B$. Furthermore, $A \rightsquigarrow B$ denotes the fact that there is no arc leading from B to A and at least one arc is leading from A to B. In this case also we say that A weakly dominates B. The outset $N^+(x)$ of a vertex x is the set of positive neighbors of x. More generally, for arbitrary subdigraphs A and B of D, the outset $N^+(A, B)$ is the set of vertices in B to which there is an arc from a vertex in A. The insets $N^-(x)$ and $N^-(A, B)$ are defined analogously. The numbers $d^+(x) = |N^+(x)|$ and $d^-(x) = |N^-(x)|$ are called outdegree and indegree of x, respectively. The minimum outdegree $\delta^+(D)$ and the minimum indegree $\delta^-(D)$ of D are given by min $\{d^+(x)|x \in V(D)\}$ and min $\{d^-(x)|x \in V(D)\}$, respectively. Furthermore, let $\delta(D)$ denote the minimum of $\delta^+(D)$ and $\delta^-(D)$.

* Corresponding author.

E-mail addresses: meierling@math2.rwth-aachen.de (D. Meierling), volkm@math2.rwth-aachen.de (L. Volkmann).

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2007.12.042

Throughout this paper, directed cycles and paths are simply called *cycles* and *paths*. The length of a cycle *C* or a path *P* is the number of arcs included in *C* or *P*. Let $C = x_1x_2 \dots x_kx_1$ be a cycle of length *k*. Then $C[x_i, x_j]$, where $1 \le i, j \le k$, denotes the subpath $x_ix_{i+1} \dots x_j$ of *C* with *initial vertex* x_i and *terminal vertex* x_j . Furthermore, if *x* is a vertex of *C*, then x_C^+ denotes the successor of *x* on *C*. The *predecessor* of a vertex *x* is defined analogously. If no confusion arises, x^+ and x^- will be used to denote x_C^+ and x_C^- . The notations for paths are defined analogously.

A digraph D is *arc-traceable* if every arc xy of D belongs to a path of order |V(D)|, i.e., a Hamiltonian path.

All digraphs mentioned here are finite without loops, multiple arcs and cycles of length two.

We speak of a *connected digraph* if the underlying graph is connected. A digraph *D* is said to be *strongly connected* or just *strong*, if for every pair *x*, *y* of vertices of *D*, there is a path from *x* to *y*. A *strong component* of *D* is a maximal induced strong subdigraph of *D*. A digraph *D* is *k*-connected if for any set *S* of at most k - 1 vertices the subdigraph D - S is strong. If *D* is a strong digraph and *S* is a subset of V(D) such that D - S is not strong, we say that *S* is a *separating set*. We speak of a separating vertex *s* if $S = \{s\}$ is a separating set of size one. A separating set *S* is called *minimal separating set* (*minimum separating set*) if there exists no separating set *U* such that $U \subseteq S$ and $U \neq S$ (|U| < |S|).

An *n*-tournament is an orientation of a complete undirected graph with order *n*. A *local tournament* is a digraph where the inset as well as the outset of every vertex induces a tournament and an *in*-tournament is a digraph where the inset of every vertex induces a tournament.

A tournament T is called *regular* if $\delta(T) = \Delta(T)$ and *almost-regular* if $\Delta(T) - \delta(T) \le 1$.

Let *D* be a digraph with $V(D) = \{v_1, v_2, \dots, v_r\}$ and let H_1, H_2, \dots, H_r be a collection of digraphs. Then $D[H_1, H_2, \dots, H_r]$ is the new digraph obtained from *D* by replacing each vertex v_i of *D* with H_i and adding the arcs from every vertex of H_i to every vertex of H_j if $v_i v_j$ is an arc of *D* for all *i* and *j* satisfying $1 \le i \ne j \le r$. The following class of digraphs plays an important role in the study of local tournaments. A digraph on *n* vertices is called a *round digraph* if we can label its vertices v_1, v_2, \dots, v_n such that $N^+(v_i) = \{v_{i+1}, v_{i+2}, \dots, v_{i+d^+(v_i)}\}$ and $N^-(v_i) = \{v_{i-1}, v_{i-2}, \dots, v_{i-d^-(v_i)}\}$ for every *i*, where the subscripts are taken modulo *n*. We refer to v_1, v_2, \dots, v_n as a *round labeling* of *D*. A local tournament *D* is *round-decomposable* if there exists a round local tournament *R* on $r \ge 2$ vertices and strong local subtournaments H_1, H_2, \dots, H_r of *D* such that $D = R[H_1, H_2, \dots, H_r]$. We call $R[H_1, H_2, \dots, H_r]$ a *round decomposition* of *D*.

Throughout this paper all subscripts are taken modulo the corresponding number.

In 1990, Bang-Jensen [2] defined local tournaments to be the family of oriented graphs where the inset as well as the outset of every vertex induces a tournament. In transferring the general adjacency only to vertices that have a common positive or a common negative neighbor, local tournaments form an interesting generalization of tournaments. Since then a lot of research has been done concerning local tournaments, or the more general class of *locally semicomplete digraphs*, where there might be cycles of length two. In particular, the Ph.D. Theses of Guo [9] and Huang [11] handled this subject in detail. For more information concerning different generalizations of tournaments, the reader may be referred to the survey article of Bang-Jensen and Gutin [3].

In claiming adjacency only for vertices that have a common positive neighbor, Bang-Jensen, Huang and Prisner [4] introduced a further generalization of local tournaments, the class of in-tournaments. Some problems concerning in-tournaments have been studied by Bang-Jensen, Huang and Prisner in their initial article [4].

In this paper, we develop the structure necessary for a local tournament D to contain an arc that does not belong to a Hamiltonian path. Using this structure, we give sufficient conditions for a local tournament to be arc-traceable. In addition we give examples that show that these conditions are best possible.

The first result concerning Hamiltonian paths in digraphs is due to Rédei [15] who showed that every tournament contains a Hamiltonian path.

Theorem 1.1 (Rédei [15] 1934). Every tournament contains a Hamiltonian path.

In 1990, Bang-Jensen [2] showed the same for connected local tournaments. In 1960, a first sufficient condition was given for a digraph to contain a Hamiltonian cycle (and thus, in particular a Hamiltonian path).

Theorem 1.2 (*Ghouila-Houri* [8] 1960). If D is a digraph such that $\delta(D) \ge |V(D)|/2$, then D contains a Hamiltonian cycle.

Moon [14] proved that every vertex in a strongly connected tournament belongs to cycles of arbitrary lengths.

Download English Version:

https://daneshyari.com/en/article/4650366

Download Persian Version:

https://daneshyari.com/article/4650366

Daneshyari.com