Note

A result on combinatorial curvature for embedded graphs on a surface

Lili Zhang
Department of Computer and Information Engineering, Hohai University, China Department of Mathematics, Nanjing Normal University, Nanjing, China

Received 23 August 2006; received in revised form 5 November 2007; accepted 7 November 2007
Available online 20 December 2007

Abstract

Let G be an infinite graph embedded in a surface such that each open face of the embedding is homeomorphic to an open disk and is bounded by finite number of edges. For each vertex x of G, we define the combinatorial curvature

$$
K_{G}(x)=1-\frac{d(x)}{2}+\sum_{\sigma \in F(x)} \frac{1}{|\sigma|},
$$

where $d(x)$ is the degree of $x, F(x)$ is the multiset of all open faces σ in the embedding such that the closure $\bar{\sigma}$ contains x, and $|\sigma|$ is the number of sides of edges bounding the face σ. In this paper, for a finite simple graph G embedded in a surface with $3 \leq d_{G}(x)<\infty$ and $K_{G}(x)>0$ for all $x \in V(G)$, we have (i) if G is embedded in a projective plane and $|V(G)|=n \geq 290$, then G is isomorphic to P_{n}; (ii) if G is embedded in a sphere and $|V(G)|=n \geq 580$, then G is isomorphic to either A_{n} or B_{n}. (C) 2007 Elsevier B.V. All rights reserved.

Keywords: Combinatorial curvature; Gauss-Bonnet formula; Euler relation; Infinite graph; Embedding; Face cycle; Finiteness theorem

1. Introduction

The notion of combinatorial curvature was introduced by Gromov [6] to study hyperbolic groups. Later it was modified by Ishida [8]. Then, the notion of discrete curvature was considered by some others, for example, see [1-4]. Moreover, using the curvature of point, Imiya et al. [7] got the application for image processing. We will give some notations used in this paper.

Let G be a graph embedded in a compact surface S without boundary. The graph G can be infinite, and may have loops and multiple edges; however, each vertex is required a finite degree. We view the vertex set $V(G)$ as a subset of S, each edge of G as an open arc of S, and consider G as the union $V(G) \bigcup E(G)$ so that G is a subset of S. If $V(G)$ is infinite, the accumulation set

$$
V^{\prime}(G):=\bar{G}-G
$$

[^0]

Fig. 1. The projective wheel graphs P_{6} and P_{7}.
may not be empty, where \bar{G} is the closure of the subset G in S. To avoid pathological cases, we assumed that the embedding satisfies the following properties:
(C1) The accumulation set $V^{\prime}(G)$ is finite;
(C2) The complement $S-\bar{G}$ is a disjoint union of connected open sets, each such open set U is homeomorphic to an open disk and its boundary ∂U in $S(\partial U=\bar{U}-U)$ is a finite subgraph of G.
Then the punctured surface $S-V^{\prime}(G)$ is decomposed into a collection of (possibly infinitely many) vertices, open edges, and open regions. We call each open region an open face (or just a face) of G, and call each accumulation point in $V^{\prime}(G)$ an end of G.

Note that the closure of a face may not be homeomorphic to a closed disk. This means that the boundary of a face may not be a cycle of G. Since each edge of G in the surface has two sides, we say that one side of an edge bounds a face σ provided that σ is exactly on that side of the edge. The length of a face σ is the number of sides of σ, and is denoted by $|\sigma|$.

For each vertex x of G, we denote by $d_{G}(x)$ or just $d(x)$ the degree of x (the number of edges incident with x), and by $F(x)$ the multiset of faces σ such that x is contained in the closure $\bar{\sigma}$; the multiplicity of a face σ is the number of times that x is visited when one travels along the sides of σ in an orientation.

Definition 1.1. Let G be a graph (finite or infinite) embedded in a compact surface S without boundary, satisfying the conditions (C1) and (C2). The combinatorial curvature of G is the function $K_{G}: V(G) \longrightarrow \mathbf{R}$ given by

$$
\begin{equation*}
K_{G}(x)=1-\frac{d(x)}{2}+\sum_{\sigma \in F(x)} \frac{1}{|\sigma|}, \quad x \in V(G) . \tag{1.1}
\end{equation*}
$$

The number $K_{G}(x)$ is called the curvature of G at the vertex x.
The most interesting and important problem about the combinatorial curvature is perhaps to classify embedded graphs whose curvatures satisfy certain properties. We are interested in classifying the embedded graphs with positive curvature at every vertex. To state our result on such classification of finite graphs with positive curvature everywhere, we introduce a type of projective wheel graphs P_{n} with $n \geq 3$ vertices, and two types of cylinder graphs A_{n} and B_{n} for integers $n \geq 3$ vertices. The vertex set of P_{n} is

$$
V\left(P_{n}\right)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}
$$

and the edge set of P_{n} is given as follows: For odd $n=2 s+1$,

$$
E\left(P_{2 s+1}\right)=\left\{x_{i} x_{i+1}, x_{i} x_{s+i}, x_{i} x_{s+i+1}: 1 \leq i \leq s+1\right\},
$$

where $x_{i}=x_{n+i}$, and for even $n=2 s$,

$$
E\left(P_{2 s}\right)=\left\{x_{i} x_{i+1}, x_{i} x_{s+i}: 1 \leq i \leq s\right\} .
$$

The examples for P_{n} are demonstrated in Fig. 1.

https://daneshyari.com/en/article/4650378

Download Persian Version:

https://daneshyari.com/article/4650378

Daneshyari.com

[^0]: E-mail address: Lilzhang@hhu.edu.cn.

