

Available online at www.sciencedirect.com

Discrete Mathematics 308 (2008) 4052-4056

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

Small proper double blocking sets in Galois planes of prime order

Petr Lisoněk*, Joanna Wallis¹

Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada V5A 1S6

Received 20 October 2006; received in revised form 26 July 2007; accepted 26 July 2007 Available online 6 September 2007

Abstract

A proper double blocking set in PG(2, p) is a set B of points such that $2 \le |B \cap l| \le (p + 1) - 2$ for each line l. The smallest known example of a proper double blocking set in PG(2, p) for large primes p is the disjoint union of two projective triangles of side (p + 3)/2; the size of this set is 3p + 3. For each prime $p \ge 11$ such that $p \equiv 3 \pmod{4}$ we construct a proper double blocking set with 3p + 1 points, and for each prime $p \ge 7$ we construct a proper double blocking set with 3p + 2 points. © 2007 Elsevier B.V. All rights reserved.

Keywords: Blocking set; Double blocking set; Galois plane

1. Introduction

Let PG(2, q) denote the projective plane over \mathbb{F}_q , the finite field of order q. A set of points $B \subseteq PG(2, q)$ is called a *t-fold blocking set* if $t \leq |B \cap l|$ for each line l of PG(2, q).

Some applications of blocking sets require that the complement of the blocking set have the same blocking property; see for example [1, Section 8.6] where the application to committee scheduling is mentioned. We say that $B \subset PG(2, q)$ is a *proper t-fold blocking set* if $t \leq |B \cap l| \leq (q + 1) - t$ for each line *l* of PG(2, *q*). A (proper) twofold blocking set will be called a (*proper*) *double blocking set*.

Blokhuis [2] proved that if p is a prime, then each proper onefold blocking set in PG(2, p) has at least 3(p + 1)/2 points; for odd p this bound is achieved by the projective triangle of side (p + 3)/2. By taking the union of two disjoint such triangles we obtain a proper double blocking set of size 3p + 3 for p > 3. While sporadic examples of proper double blocking sets of size less than 3p + 3 are known for small primes p, it appears that no infinite families of such examples are known presently. The objective of this paper is to provide a construction of proper double blocking sets of size 3p + 1 for all primes $p \equiv 3 \pmod{4}$, $p \ge 11$, and of size 3p + 2 for all primes $p \ge 7$.

No example (sporadic or not) of a twofold blocking set (proper or not) in PG(2, p), p prime, with size less than 3p is known presently, with the exception of a 38-point set in PG(2, 13) discovered recently [3].

At some level our first construction (Theorem 2.2) can be viewed as a certain generalization of the classical construction of the projective triangle of side (p + 3)/2, see for example [4, Lemma 13.6], to the case where the set is created on four lines.

0012-365X/\$ - see front matter @ 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2007.07.103

^{*} Corresponding author.

E-mail addresses: plisonek@math.sfu.ca (P. Lisoněk), jlwallis@math.sfu.ca (J. Wallis).

¹ Research partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

2. The constructions

Throughout this section, let p be an odd prime.

For $x \in \mathbb{F}_p$ we say that x is a square if $x = s^2$ for some $s \in \mathbb{F}_p$. Otherwise, x is a non-square. By \Box_p we denote the set of all non-zero squares of \mathbb{F}_p and by \Box_p we denote the set of all non-squares of \mathbb{F}_p . Note that 0 does not appear in either set. Recall that for $x \in \mathbb{F}_p$ the Legendre symbol (x/p) is defined by (0/p) = 0, (x/p) = 1 if $x \in \Box_p$ and (x/p) = -1 if $x \in \Box_p$. For $p \equiv 3 \pmod{4}$ we have (-x/p) = -(x/p). Other properties of the Legendre symbol which we will use later are $\sum_{x \in \mathbb{F}_p} (x/p) = 0$ and (ab/p) = (a/p)(b/p) for all $a, b \in \mathbb{F}_p$.

Proposition 2.1. If p is a prime such that $p \equiv 3 \pmod{4}$, then the set

$$S_p := \{ x \in \mathbb{F}_p \mid x \in \Box_p \text{ or } x + 1 \in \underline{\square}_p \}$$

$$\tag{1}$$

has cardinality $\frac{1}{4}(3p-5)$.

Proof. Consider the set

$$S'_p := \left\{ x \in \mathbb{F}_p \left| \left(\frac{x}{p} \right) = -1 \text{ and } \left(\frac{x+1}{p} \right) = 1 \right\} \right\}$$

and note that $\mathbb{F}_p = S_p \sqcup S'_p \sqcup \{0, -1\}$, where \sqcup denotes disjoint union.

For $x \in \mathbb{F}_p$ consider the function

$$\kappa(x) := \frac{1}{4} \left(1 - \left(\frac{x}{p} \right) \right) \left(1 + \left(\frac{x+1}{p} \right) \right).$$

For each $x \in \mathbb{F}_p \setminus \{0, -1\}$ we have $\kappa(x) = 1$ if $x \in S'_p$ and $\kappa(x) = 0$ if $x \notin S'_p$. Since $S'_p \subset \mathbb{F}_p \setminus \{0, -1\}$, we simply have

$$|S'_p| = \sum_{x \in \mathbb{F}_p \setminus \{0, -1\}} \kappa(x).$$

We can evaluate this sum as

$$\sum_{x \in \mathbb{F}_p \setminus \{0, -1\}} \kappa(x) = \sum_{x \in \mathbb{F}_p \setminus \{0, -1\}} \frac{1}{4} \left(1 - \left(\frac{x}{p} \right) \right) \left(1 + \left(\frac{x+1}{p} \right) \right)$$
$$= \frac{1}{4} \left((p-2) + (-1) - 1 - \sum_{x \in \mathbb{F}_p \setminus \{0, -1\}} \left(\frac{x}{p} \right) \left(\frac{x}{p} \right) \left(\frac{x^{-1}(x+1)}{p} \right) \right)$$
$$= \frac{1}{4} \left(p - 4 - \sum_{x \in \mathbb{F}_p \setminus \{0, -1\}} \left(\frac{1+x^{-1}}{p} \right) \right) = \frac{1}{4} (p-3).$$

Thus

$$|S_p| = |\mathbb{F}_p| - |S'_p| - |\{0, -1\}| = p - \frac{1}{4}(p-3) - 2 = \frac{1}{4}(3p-5).$$

Our construction of the proper double blocking set presented in the proof of Theorem 2.2 exhibits parallels to one classical example of a onefold blocking set, namely the projective triangle of side (p+3)/2 (see e.g. [4, Lemma 13.6]). In our case, each point of the set lies on one of *four* lines in a general position. A second similarity consists of exploiting the properties of squares and non-squares in \mathbb{F}_p in order to achieve the desired blocking property of the set.

By [a:b:c] we will denote the line consisting of the points (x:y:z) such that ax + by + cz = 0.

Theorem 2.2. Let $p \ge 11$ be a prime such that $p \equiv 3 \pmod{4}$. There is a proper double blocking set *B* in PG(2, *p*) such that |B| = 3p + 1 and each line of PG(2, *p*) intersects *B* in at most $\frac{1}{4}(3p + 7)$ points.

Download English Version:

https://daneshyari.com/en/article/4650391

Download Persian Version:

https://daneshyari.com/article/4650391

Daneshyari.com