Small proper double blocking sets in Galois planes of prime order

Petr Lisoněk*, Joanna Wallis ${ }^{1}$
Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada V5A 1S6

Received 20 October 2006; received in revised form 26 July 2007; accepted 26 July 2007
Available online 6 September 2007

Abstract

A proper double blocking set in $\mathrm{PG}(2, p)$ is a set B of points such that $2 \leqslant|B \cap l| \leqslant(p+1)-2$ for each line l. The smallest known example of a proper double blocking set in $\operatorname{PG}(2, p)$ for large primes p is the disjoint union of two projective triangles of side $(p+3) / 2$; the size of this set is $3 p+3$. For each prime $p \geqslant 11$ such that $p \equiv 3(\bmod 4)$ we construct a proper double blocking set with $3 p+1$ points, and for each prime $p \geqslant 7$ we construct a proper double blocking set with $3 p+2$ points. © 2007 Elsevier B.V. All rights reserved.

Keywords: Blocking set; Double blocking set; Galois plane

1. Introduction

Let $\mathrm{PG}(2, q)$ denote the projective plane over \mathbb{F}_{q}, the finite field of order q. A set of points $B \subseteq \operatorname{PG}(2, q)$ is called a t-fold blocking set if $t \leqslant|B \cap l|$ for each line l of $\mathrm{PG}(2, q)$.
Some applications of blocking sets require that the complement of the blocking set have the same blocking property; see for example [1, Section 8.6] where the application to committee scheduling is mentioned. We say that $B \subset \operatorname{PG}(2, q)$ is a proper t-fold blocking set if $t \leqslant|B \cap l| \leqslant(q+1)-t$ for each line l of $\mathrm{PG}(2, q)$. A (proper) twofold blocking set will be called a (proper) double blocking set.

Blokhuis [2] proved that if p is a prime, then each proper onefold blocking set in $\operatorname{PG}(2, p)$ has at least $3(p+1) / 2$ points; for odd p this bound is achieved by the projective triangle of side $(p+3) / 2$. By taking the union of two disjoint such triangles we obtain a proper double blocking set of size $3 p+3$ for $p>3$. While sporadic examples of proper double blocking sets of size less than $3 p+3$ are known for small primes p, it appears that no infinite families of such examples are known presently. The objective of this paper is to provide a construction of proper double blocking sets of size $3 p+1$ for all primes $p \equiv 3(\bmod 4), p \geqslant 11$, and of size $3 p+2$ for all primes $p \geqslant 7$.

No example (sporadic or not) of a twofold blocking set (proper or not) in $\operatorname{PG}(2, p), p$ prime, with size less than $3 p$ is known presently, with the exception of a 38 -point set in $\mathrm{PG}(2,13)$ discovered recently [3].
At some level our first construction (Theorem 2.2) can be viewed as a certain generalization of the classical construction of the projective triangle of side $(p+3) / 2$, see for example [4, Lemma 13.6], to the case where the set is created on four lines.

[^0]
2. The constructions

Throughout this section, let p be an odd prime.
For $x \in \mathbb{F}_{p}$ we say that x is a square if $x=s^{2}$ for some $s \in \mathbb{F}_{p}$. Otherwise, x is a non-square. By \square_{p} we denote the set of all non-zero squares of \mathbb{F}_{p} and by \square_{p} we denote the set of all non-squares of \mathbb{F}_{p}. Note that 0 does not appear in either set. Recall that for $x \in \mathbb{F}_{p}$ the Legendre symbol (x / p) is defined by $(0 / p)=0,(x / p)=1$ if $x \in \square_{p}$ and $(x / p)=-1$ if $x \in \square_{p}$. For $p \equiv 3(\bmod 4)$ we have $(-x / p)=-(x / p)$. Other properties of the Legendre symbol which we will use later are $\sum_{x \in \mathbb{F}_{p}}(x / p)=0$ and $(a b / p)=(a / p)(b / p)$ for all $a, b \in \mathbb{F}_{p}$.

Proposition 2.1. If p is a prime such that $p \equiv 3(\bmod 4)$, then the set

$$
\begin{equation*}
S_{p}:=\left\{x \in \mathbb{F}_{p} \mid x \in \square_{p} \text { or } x+1 \in \square_{p}\right\} \tag{1}
\end{equation*}
$$

has cardinality $\frac{1}{4}(3 p-5)$.
Proof. Consider the set

$$
S_{p}^{\prime}:=\left\{x \in \mathbb{F}_{p} \left\lvert\,\left(\frac{x}{p}\right)=-1\right. \text { and }\left(\frac{x+1}{p}\right)=1\right\}
$$

and note that $\mathbb{F}_{p}=S_{p} \sqcup S_{p}^{\prime} \sqcup\{0,-1\}$, where \sqcup denotes disjoint union.
For $x \in \mathbb{F}_{p}$ consider the function

$$
\kappa(x):=\frac{1}{4}\left(1-\left(\frac{x}{p}\right)\right)\left(1+\left(\frac{x+1}{p}\right)\right) .
$$

For each $x \in \mathbb{F}_{p} \backslash\{0,-1\}$ we have $\kappa(x)=1$ if $x \in S_{p}^{\prime}$ and $\kappa(x)=0$ if $x \notin S_{p}^{\prime}$. Since $S_{p}^{\prime} \subset \mathbb{F}_{p} \backslash\{0,-1\}$, we simply have

$$
\left|S_{p}^{\prime}\right|=\sum_{x \in \mathbb{F}_{p \backslash\{0,-1\}}} \kappa(x) .
$$

We can evaluate this sum as

$$
\begin{aligned}
\sum_{x \in \mathbb{F}_{p} \backslash\{0,-1\}} \kappa(x) & =\sum_{x \in \mathbb{F}_{p \backslash\{0,-1\}}} \frac{1}{4}\left(1-\left(\frac{x}{p}\right)\right)\left(1+\left(\frac{x+1}{p}\right)\right) \\
& =\frac{1}{4}\left((p-2)+(-1)-1-\sum_{x \in \mathbb{F}_{p} \backslash\{0,-1\}}\left(\frac{x}{p}\right)\left(\frac{x}{p}\right)\left(\frac{x^{-1}(x+1)}{p}\right)\right) \\
& =\frac{1}{4}\left(p-4-\sum_{x \in \mathbb{F}_{p} \backslash\{0,-1\}}\left(\frac{1+x^{-1}}{p}\right)\right)=\frac{1}{4}(p-3) .
\end{aligned}
$$

Thus

$$
\left|S_{p}\right|=\left|\mathbb{F}_{p}\right|-\left|S_{p}^{\prime}\right|-|\{0,-1\}|=p-\frac{1}{4}(p-3)-2=\frac{1}{4}(3 p-5) .
$$

Our construction of the proper double blocking set presented in the proof of Theorem 2.2 exhibits parallels to one classical example of a onefold blocking set, namely the projective triangle of side ($p+3$)/2 (see e.g. [4, Lemma 13.6]). In our case, each point of the set lies on one of four lines in a general position. A second similarity consists of exploiting the properties of squares and non-squares in \mathbb{F}_{p} in order to achieve the desired blocking property of the set.

By $[a: b: c]$ we will denote the line consisting of the points $(x: y: z)$ such that $a x+b y+c z=0$.
Theorem 2.2. Let $p \geqslant 11$ be a prime such that $p \equiv 3(\bmod 4)$. There is a proper double blocking set B in $\operatorname{PG}(2, p)$ such that $|B|=3 p+1$ and each line of $\mathrm{PG}(2, p)$ intersects B in at most $\frac{1}{4}(3 p+7)$ points.

https://daneshyari.com/en/article/4650391

Download Persian Version:

https://daneshyari.com/article/4650391

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: plisonek @ math.sfu.ca (P. Lisoněk), jlwallis@math.sfu.ca (J. Wallis).
 ${ }^{1}$ Research partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

