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Abstract

Let (T1, T2, . . . , Tc) be a fixed c-tuple of sets of graphs (i.e. each Ti is a set of graphs). Let R(c, n, (T1, T2, . . . , Tc)) denote
the set of all n-tuples, (a1, a2, . . . , an), such that every c-coloring of the edges of the complete multipartite graph, Ka1,a2,...,an ,
forces a monochromatic subgraph of color i from the set Ti (for at least one i). If N denotes the set of non-negative integers, then
R(c, n, (T1, T2, . . . , Tc)) ⊆ Nn. We call such a subset of Nn a “Ramsey region”. An application of Ramsey’s Theorem shows
that R(c, n, (T1, T2, . . . , Tc)) is non-empty for n?0. For a given c-tuple, (T1, T2, . . . , Tc), known results in Ramsey theory help
identify values of n for which the associated Ramsey regions are non-empty and help establish specific points that are in such
Ramsey regions. In this paper, we develop the basic theory and some of the underlying algebraic structure governing these regions.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Ramsey theory dates back 75 years to the following theorem:

Theorem 1 (Ramsey). Let r, k, l be given positive integers. There exists a positive integer n with the following property.
If the k-subsets of an n element set are colored with r colors then there exists an l element set all of whose k-subsets
are of the same color.

For a given r, k, l it is an interesting (and hard) problem to find the smallest value of n guaranteed to exist by Ramsey’s
Theorem. The theorem has many corollaries guaranteeing the existence of substructures under various conditions. If
k is a set equal to 2 then Ramsey’s Theorem is a theorem in graph theory. It states that for n sufficiently large, any
r coloring of the edges of Kn contains a monochromatic subgraph isomorphic to Kl . Since any graph, G, embeds in
some complete graph, the theorem also implies that for n sufficiently large, any r coloring of the edges of Kn contains
a monochromatic subgraph isomorphic to G.

In this paper, Ka1,a2,...,at will denote the complete t-partite graph on sets of vertices of size a1, a2, . . . , at and Kn

will denote the complete graph on n vertices (thus Kn = K(1,1,...,1)). Let G be an arbitrary graph. If the vertices of G

can be colored with t colors such that adjacent vertices have different colors then G can be embedded into a complete
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t-partite graph. The smallest t such that G can be embedded into a complete t-partite graph is called the chromatic
number of G and is denoted by �(G).

Let (T1, T2, . . . , Tc) be a c-tuple of sets of graphs (i.e. each Ti is a set of graphs). Let R(c, n, (T1, T2, . . . , Tc))

denote the set of all n-tuples such that every c-coloring of the edges of Ka1,a2,...,an forces a monochromatic subgraph
of color i from the set Ti (for some i). Ramsey’s Theorem guarantees that R(c, n, (T1, T2, . . . , Tc)) is non-empty
for n?0. More precisely, Ramsey’s Theorem guarantees that the n-tuple consisting entirely of 1’s is an element of
R(c, n, (T1, T2, . . . , Tc)) provided that n?0. The set of all n-tuples in R(c, n, (T1, T2, . . . , Tc)) is called a Ramsey
region. The goal of this paper is to develop the basic theory of Ramsey regions. Let M denote the minimum value of the
chromatic numbers of the graphs in the various Ti’s. M provides a lower bound on n such that R(c, n, (T1, T2, . . . , Tc))

is non-empty. Known results in Ramsey theory can be used to give upper bounds on n such that the n-tuple consisting
entirely of 1’s lies in R(c, n, (T1, T2, . . . , Tc)). In general, these bounds are far from being sharp. However, we can
use many of the bounds found in [11] as a starting point for bounding Ramsey regions. The result and ideas found
in [1–3] and in [5–10] provided much of the original impetus to formulate a setting within which a broad range of
Ramsey theoretical results could sit and influence each other. It is important to note that any given Ramsey region
can be described completely by a finite list of n-tuples(even though a non-empty Ramsey region will have an infinite
number of points). Part of the motivation for introducing Ramsey regions arose when addressing the complexity issues
in computing new Ramsey numbers. With Ramsey regions, a complex problem can be broken down into smaller pieces.
Furthermore, information learned about one Ramsey region can help in the understanding of other Ramsey regions. As
a result, it is hoped that an accumulation of knowledge can build to allow for the solution of problems that would be
difficult to attack in a single step.

2. Main definitions and theorems

For this entire section, Ka1,a2,...,an will denote a complete multipartite graph and A = (T1, T2, . . . , Tc) will be an
ordered c-tuple of sets of graphs. All graphs are assumed to have no multiple edges and no loops. R(c, n, A) will denote
the set of all n-tuples such that every c-coloring of the edges of Ka1,a2,...,an forces a monochromatic subgraph of color
i which is isomorphic to a graph from the set Ti (for at least one value of i). If T = T1 = T2 = · · · = Tc then we write
R(c, n, T ) instead of R(c, n, (T1, T2, . . . , Tc)).

Proposition 2. Suppose Ka1,a2,...,an ⊆ Kb1,b2,...,bm then

(a1, a2, . . . , an) ∈ R(c, n, A) �⇒ (b1, b2, . . . , bm) ∈ R(c, m, A).

Proof. Fix an injection Ka1,a2,...,an ↪→ Kb1,b2,...,bm . In coloring the edges of Kb1,b2,...,bm with c colors, you induce a
coloring of the edges of Ka1,a2,...,an with c colors. Thus, if there exists a monochromatic subgraph of Kb1,b2,...,bm of
color i which is isomorphic to a given graph G then the induced coloring of the edges of Ka1,a2,...,an will also contain
a monochromatic subgraph of color i which is isomorphic to G. �

Corollary 3. Let Sn denote the symmetric group on n elements and suppose � ∈ Sn, then

(a1, a2, . . . , an) ∈ R(c, n, A) ⇐⇒ (a�(1), a�(2), . . . , a�(n)) ∈ R(c, n, A).

Proof. Follows from Proposition 2 using Ka1,a2,...,an 	 Ka�(1),a�(2),...,a�(n)
. �

Corollary 4. If (a1, a2, . . . , an) and (b1, b2, . . . , bn) are n-tuples such that bi �ai for 1� i�n then

(a1, a2, . . . , an) ∈ R(c, n, A) �⇒ (b1, b2, . . . , bn) ∈ R(c, n, A).

Proof. Follows from Proposition 2 using Ka1,a2,...,an ⊆ Kb1,b2,...,bn . �

Corollary 5. If (a1, a2, . . . , an) is an n-tuple and b satisfies 0�b�a1 then

(a1, . . . , an) ∈ R(c, n, A) �⇒ (a1 − b, a2, . . . , an, b) ∈ R(c, n + 1, A).

Proof. Follows from Proposition 2 using Ka1,a2,...,an ⊆ Ka1−b,a2,...,an,b. �
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