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Abstract

A circular-perfect graph is a graph of which each induced subgraph has the same circular chromatic number as its circular clique
number. In this paper, (1) we prove a lower bound on the order of minimally circular-imperfect graphs, and characterize those that
attain the bound; (2) we prove that if G is a claw-free minimally circular-imperfect graph such that �c(G − x) > �(G − x) for some
x ∈ V (G), then G = K(2k+1)/2 + x for an integer k; and (3) we also characterize all minimally circular-imperfect line graphs.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

All graphs considered are finite and simple, i.e., finite graphs without multiedges and loops. Undefined concepts
and terminologies are from [5].

Let G=(V , E) be a graph, where V and E denote the vertex set and edge set of G, respectively. Two vertices u and v are
adjacent, denoted by uv ∈ E(G), if there is an edge in E(G) joining them. A proper subgraph of G is a subgraph which is
not G itself. A subgraph H of G is called an induced subgraph if E(H)={uv|u ∈ V (H), u ∈ V (H), and uv ∈ E(G)}.
Let S ⊂ V be a subset of vertices. We use G[S] to denote the subgraph of G induced by S.

A graph G is called a perfect graph if every induced subgraph H of G has the same chromatic number �(H) as its
clique number �(H). A minimally imperfect graph is an imperfect graph of which each proper induced subgraph is
perfect. An odd hole is an odd circuit of length at least five. The famous Perfect Graph Conjecture [3] was proved by
Chudnovsky et al. in [6].

Theorem 1 (Chudnovsky et al. [6], Strong Perfect Graph Theorem). The only minimally imperfect graphs are the odd
holes and their complements.

Let k and d be positive integers with k�2d . A (k, d)-circular coloring of a graph G is a mapping � : V (G) �−
→ {0, 1, 2, . . . , k − 1} such that d � |�(u) − �(v)|�k − d whenever uv ∈ E(G). A graph G is called k/d-circular
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colorable if it admits a (k, d)-circular coloring. The circular chromatic number of G, denoted by �c(G), is defined as
�c(G) = inf{k/d|G is k/d-circular colorable}.

The concept of circular coloring was first introduced in 1988 by Vince [9] with the name star coloring, and it got
the current name from Zhu [15]. It was proved elsewhere [4,9] that �c(G) is always attained at rational number and

�(G) − 1 < �c(G)��(G) for any graph G. (1)

A (k, d)-partition of G is a partition (V0, V1, V2, . . . , Vk−1) of V (G) such that for each i, 0� i�k − 1, Vi ∪ Vi+1 ∪
· · · ∪ Vi+d−1 is an independent set of G, where the addition of indices is taken mod k (Vi = ∅ for some i is permitted).
It is easy to see that a (k, d)-partition of G is simply the color classes of a (k, d)-coloring of G. Below is a theorem
from [7].

Theorem 2 (Fan [7]). A graph G has a (k, d)-circular coloring iff it has a (k, d)-partition. Furthermore, �c(G)=k/d

iff G is k/d-circular colorable and for every (k, d)-partition V0, V1, . . . , Vk−1 of G, Vi �= ∅ for every i.

Section 2 is devoted to the concept of circular-perfect graphs and some examples of minimally circular-imperfect
graphs. In Section 3, we present a lower bound on the order of minimally circular-imperfect graphs, and characterize
those that attain the bound. In Section 4, we characterize the claw-free minimally circular-imperfect graphs with the
property that �c(G − x) > �(G − x) for some x ∈ V (G). In the last section, we characterize all minimally circular-
imperfect line graphs.

2. Circular-perfect graphs

Given two positive integers k and d with k�2d , let Kk/d be a graph with V (Kk/d) = {v0, v1, v2, . . . , vk−1} and
E(Kk/d) = {vivj |d � |j − i|�k − d}. While d = 1, Kk/d is simply the complete graph Kk of order k.

It was proved that �c(Kk/d) = k/d [4,9]. So, if a graph G contains a subgraph H isomorphic to Kk/d (we simply
denote it by H = Kk/d ) for some k and d, then �c(G)�k/d. Unless otherwise specified, {v0, v1, v2, . . . , vk−1} and
{vivj |d � |j − i|�k − d} always refer to the vertex set and edge set of Kk/d , respectively.

The circular clique number of G (first introduced by Zhu in [16]), denoted by �c(G), is defined as the maximum
fractional k/d such that Kk/d admits a homomorphism to G. Let gcd(k, d) be the greatest common divisor of integers
k and d. Zhu proved in [16] that

Theorem 3 (Zhu [16]). For any graph G,

�(G)��c(G) < �(G) + 1 (2)

and �c(G) = k/d for some k and d with gcd(k, d) = 1 indicates that G contains an induced subgraph isomorphic
to Kk/d .

A graph G is called circular-perfect if �c(H) = �c(H) for each induced subgraph H of G [16]. Up to now, we do
not know too much on the structure of circular-perfect graphs. Some sufficient conditions and necessary conditions
for a graph to be circular-perfect were discussed in [11,16]. Bang-Jensen and Huang presented in [1] a family of
circular-perfect graphs, they called them convex-round graphs, which is a super-family of Kk/d ’s.

Theorem 4 (Bang-Jensen and Huang [1], Zhu [16]). For any integers k�2d, Kk/d is circular-perfect.

A circular-imperfect graph is a graph that is not circular-perfect, and a minimally circular-imperfect graph is a
circular-imperfect graph of which each proper induced subgraph is circular-perfect. The Strong Perfect Graph Theorem
and Theorem 4 tell us that every minimally imperfect graph is in fact circular-perfect.

To study the circular-perfect graphs, a natural approach is to characterize the minimally circular-imperfect
graphs. It seems that the structure of minimally circular-imperfect graphs is much more complicated than that of
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