# On minimally circular-imperfect graphs ${ }^{\text {th }}$ 

Baogang Xu<br>School of Mathematics and Computer Science, Nanjing Normal University, 122 Ninghai Road, Nanjing 210097, China<br>Received 7 March 2006; received in revised form 18 January 2007; accepted 26 June 2007<br>Available online 6 August 2007


#### Abstract

A circular-perfect graph is a graph of which each induced subgraph has the same circular chromatic number as its circular clique number. In this paper, (1) we prove a lower bound on the order of minimally circular-imperfect graphs, and characterize those that attain the bound; (2) we prove that if $G$ is a claw-free minimally circular-imperfect graph such that $\omega_{\mathrm{C}}(G-x)>\omega(G-x)$ for some $x \in V(G)$, then $G=K_{(2 k+1) / 2}+x$ for an integer $k$; and (3) we also characterize all minimally circular-imperfect line graphs. © 2007 Elsevier B.V. All rights reserved.


MSC: $05 \mathrm{c} 15 ; 05 \mathrm{c} 78$
Keywords: Circular coloring; Circular clique; Circular-perfect

## 1. Introduction

All graphs considered are finite and simple, i.e., finite graphs without multiedges and loops. Undefined concepts and terminologies are from [5].

Let $G=(V, E)$ be a graph, where $V$ and $E$ denote the vertex set and edge set of $G$, respectively. Two vertices $u$ and $v$ are adjacent, denoted by $u v \in E(G)$, if there is an edge in $E(G)$ joining them. A proper subgraph of $G$ is a subgraph which is not $G$ itself. A subgraph $H$ of $G$ is called an induced subgraph if $E(H)=\{u v \mid u \in V(H), u \in V(H)$, and $u v \in E(G)\}$. Let $S \subset V$ be a subset of vertices. We use $G[S]$ to denote the subgraph of $G$ induced by $S$.

A graph $G$ is called a perfect graph if every induced subgraph $H$ of $G$ has the same chromatic number $\chi(H)$ as its clique number $\omega(H)$. A minimally imperfect graph is an imperfect graph of which each proper induced subgraph is perfect. An odd hole is an odd circuit of length at least five. The famous Perfect Graph Conjecture [3] was proved by Chudnovsky et al. in [6].

Theorem 1 (Chudnovsky et al. [6], Strong Perfect Graph Theorem). The only minimally imperfect graphs are the odd holes and their complements.

Let $k$ and $d$ be positive integers with $k \geqslant 2 d$. A $(k, d)$-circular coloring of a graph $G$ is a mapping $\psi: V(G) \vdash$ $\rightarrow\{0,1,2, \ldots, k-1\}$ such that $d \leqslant|\psi(u)-\psi(v)| \leqslant k-d$ whenever $u v \in E(G)$. A graph $G$ is called $k / d$-circular

[^0]colorable if it admits a $(k, d)$-circular coloring. The circular chromatic number of $G$, denoted by $\chi_{\mathrm{c}}(G)$, is defined as $\chi_{\mathrm{c}}(G)=\inf \{k / d \mid G$ is $k / d$-circular colorable $\}$.

The concept of circular coloring was first introduced in 1988 by Vince [9] with the name star coloring, and it got the current name from Zhu [15]. It was proved elsewhere $[4,9]$ that $\chi_{\mathrm{c}}(G)$ is always attained at rational number and

$$
\begin{equation*}
\chi(G)-1<\chi_{\mathrm{c}}(G) \leqslant \chi(G) \quad \text { for any graph } G . \tag{1}
\end{equation*}
$$

A $(k, d)$-partition of $G$ is a partition $\left(V_{0}, V_{1}, V_{2}, \ldots, V_{k-1}\right)$ of $V(G)$ such that for each $i, 0 \leqslant i \leqslant k-1, V_{i} \cup V_{i+1} \cup$ $\cdots \cup V_{i+d-1}$ is an independent set of $G$, where the addition of indices is taken $\bmod k\left(V_{i}=\emptyset\right.$ for some $i$ is permitted). It is easy to see that a $(k, d)$-partition of $G$ is simply the color classes of a $(k, d)$-coloring of $G$. Below is a theorem from [7].

Theorem 2 (Fan [7]). A graph G has a ( $k, d$ )-circular coloring iff it has a $(k, d)$-partition. Furthermore, $\chi_{\mathrm{c}}(G)=k / d$ iff $G$ is $k / d$-circular colorable and for every $(k, d)$-partition $V_{0}, V_{1}, \ldots, V_{k-1}$ of $G, V_{i} \neq \emptyset$ for every $i$.

Section 2 is devoted to the concept of circular-perfect graphs and some examples of minimally circular-imperfect graphs. In Section 3, we present a lower bound on the order of minimally circular-imperfect graphs, and characterize those that attain the bound. In Section 4, we characterize the claw-free minimally circular-imperfect graphs with the property that $\omega_{\mathrm{c}}(G-x)>\omega(G-x)$ for some $x \in V(G)$. In the last section, we characterize all minimally circularimperfect line graphs.

## 2. Circular-perfect graphs

Given two positive integers $k$ and $d$ with $k \geqslant 2 d$, let $K_{k / d}$ be a graph with $V\left(K_{k / d}\right)=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{k-1}\right\}$ and $E\left(K_{k / d}\right)=\left\{v_{i} v_{j}|d \leqslant|j-i| \leqslant k-d\}\right.$. While $d=1, K_{k / d}$ is simply the complete graph $K_{k}$ of order $k$.

It was proved that $\chi_{\mathrm{c}}\left(K_{k / d}\right)=k / d[4,9]$. So, if a graph $G$ contains a subgraph $H$ isomorphic to $K_{k / d}$ (we simply denote it by $H=K_{k / d}$ ) for some $k$ and $d$, then $\chi_{\mathrm{c}}(G) \geqslant k / d$. Unless otherwise specified, $\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{k-1}\right\}$ and $\left\{v_{i} v_{j}|d \leqslant|j-i| \leqslant k-d\}\right.$ always refer to the vertex set and edge set of $K_{k / d}$, respectively.

The circular clique number of $G$ (first introduced by Zhu in [16]), denoted by $\omega_{c}(G)$, is defined as the maximum fractional $k / d$ such that $K_{k / d}$ admits a homomorphism to $G$. Let $\operatorname{gcd}(k, d)$ be the greatest common divisor of integers $k$ and $d$. Zhu proved in [16] that

Theorem 3 (Zhu [16]). For any graph $G$,

$$
\begin{equation*}
\omega(G) \leqslant \omega_{\mathrm{c}}(G)<\omega(G)+1 \tag{2}
\end{equation*}
$$

and $\omega_{\mathrm{c}}(G)=k / d$ for some $k$ and $d$ with $\operatorname{gcd}(k, d)=1$ indicates that $G$ contains an induced subgraph isomorphic to $K_{k / d}$.

A graph $G$ is called circular-perfect if $\omega_{\mathrm{c}}(H)=\chi_{\mathrm{c}}(H)$ for each induced subgraph $H$ of $G$ [16]. Up to now, we do not know too much on the structure of circular-perfect graphs. Some sufficient conditions and necessary conditions for a graph to be circular-perfect were discussed in [11,16]. Bang-Jensen and Huang presented in [1] a family of circular-perfect graphs, they called them convex-round graphs, which is a super-family of $K_{k / d}$ 's.

Theorem 4 (Bang-Jensen and Huang [1], Zhu [16]). For any integers $k \geqslant 2 d, K_{k / d}$ is circular-perfect.
A circular-imperfect graph is a graph that is not circular-perfect, and a minimally circular-imperfect graph is a circular-imperfect graph of which each proper induced subgraph is circular-perfect. The Strong Perfect Graph Theorem and Theorem 4 tell us that every minimally imperfect graph is in fact circular-perfect.

To study the circular-perfect graphs, a natural approach is to characterize the minimally circular-imperfect graphs. It seems that the structure of minimally circular-imperfect graphs is much more complicated than that of

# https://daneshyari.com/en/article/4650535 

Download Persian Version:

## https://daneshyari.com/article/4650535

## Daneshyari.com


[^0]:    ${ }^{2}$ Supported partially by NNSF 10371055.
    E-mail address: baogxu@njnu.edu.cn.

