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Abstract

A configuration of pebbles on the vertices of a graph is solvable if one can place a pebble on any given root vertex via a sequence
of pebbling steps. A function is a pebbling threshold for a sequence of graphs if a randomly chosen configuration of asymptotically
more pebbles is almost surely solvable, while one of asymptotically fewer pebbles is almost surely not. In this paper we tighten the
gap between the upper and lower bounds for the pebbling threshold for the sequence of paths in the multiset model. We also find the
pebbling threshold for the sequence of paths in the binomial model. Finally, we show that the spectrum of pebbling thresholds for
graph sequences in the multiset model spans the entire range from n1/2 to n, answering a question of Czygrinow, Eaton, Hurlbert
and Kayll. What the spectrum looks like above n remains unknown.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Let G= (V , E) be a connected graph on n vertices and let D be a configuration of t unlabeled pebbles on V (formally
D is multiset of t elements from V, with D(v) the number of pebbles on vertex v). A pebbling step consists of removing
two pebbles from a vertex v and placing one pebble on a neighbor of v. A configuration is called r-solvable if it is
possible to move at least one pebble to vertex r by a sequence of pebbling steps. A configuration is called solvable if it is
r-solvable for every vertex r ∈ V . The pebbling number of G is the smallest integer �(G) such that every configuration
of t=�(G) pebbles on G is solvable. Pebbling problems have a rich history and we refer to [6] for a thorough discussion.
Standard asymptotic notation will be used in the paper. For two functions f = f (n) and g = g(n), we write f>g

(or f ∈ o(g)) if f/g approaches zero as n approaches infinity, f ∈ O(g) (f ∈ �(g)) if there exist positive constants
c, k such that f < cg (f > cg) whenever n > k. In addition, f ∈ �(g) when f ∈ O(g) and g ∈ O(f ). We will also
use f ∼ g if f/g approaches 1 as n approaches infinity. Finally to simplify the exposition we shall always assume,
whenever needed, that our functions take integer values.
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We will be mainly interested in the following random model considered in [2]. A configuration D of t pebbles

assigned to G is selected randomly and uniformly from all
(

n+t−1
t

)
configurations. The problem to investigate, then,

is to find what values of t, as functions of the number of vertices n = n(G), make D almost surely solvable. More
precisely, a function t = t (n) is called a threshold of a graph sequence G= (G1, . . . , Gn, . . .), where Gn has n vertices,
if the following conditions hold as n tends to infinity:

1. for t1>t the probability that a configuration of t1 pebbles is solvable tends to zero, and
2. for t2?t the probability that a configuration of t2 pebbles is solvable tends to one.

We denote by �M(G) the set of all threshold functions of G in the multiset model. It is not immediately clear, however,
that �M(G) is nonempty for all G. Nonetheless it is proven to be the case in [1]. In this paper, we will study thresholds
in the case when G is the family of paths. First let us note that the pebbling number of a path on n vertices is equal to
2n−1. However, most of the configurations on t pebbles with t much smaller than 2n−1 will still be solvable and so not
surprisingly the threshold of the family of paths is much smaller than 2n−1. Let P= (Pn)

∞
n=1 be the sequence of paths.

In [1] it is showed that

�M(P) = O(n22
√

lg n) (1)

and

�M(P) = �(n2c
√

lg n) (2)

for any constant c < 1/
√

2. The upper bound (1) was improved by Godbole et al. [5], to

�M(P) = O(n2C
√

lg n) (3)

for any constant C > 1. Our main result of the paper improves the lower bound from [1], showing a lower bound which
almost matches the upper bound from [5].

Theorem 1. Let P= (Pn)
∞
n=1 be the sequence of paths. For any � > 0, let w = (1 − �)

√
lg n. Then �M(P) = �(n2w).

Clearly the random pebbling model from [2] is only one of many that can be considered. In particular, if pebbles are
distinguishable and each of them selects independently at random a vertex to be placed on then we obtain a completely
different model, which we call the binomial model. We can define the threshold �B(G) in this model in the same way
that �M(G) is defined for the multinomial model. Then it is easy to see that �B(P) = O(n ln n) (since the probability
that every vertex contains a pebble tends to 1) but in fact the threshold is slightly smaller.

Theorem 2. Let P = (Pn)
∞
n=1 be the sequence of paths. Then

�B(P) =
(

1

2
+ o(1)

)
n

ln n

lg ln n
.

It turns out that to prove Theorem 1 it is convenient to consider one more model, the geometric one. In this model
each vertex on a path generates the number of pebbles that it contains according to the geometric distribution with
p = t/(t + n), where t is some function of n—that is, the probability that exactly C pebbles sit on a fixed vertex equals
pC(1 − p). Conveniently, the geometric model can be used to approximate the multinomial one from [2]. It is this
observation that allows us to generalize the technique from [1] and prove a better lower bound.

The rest of the paper is organized as follows. We prove Theorem 1 in Section 2, and in Section 3 we show Theorem
2. Finally, Section 4 is devoted to investigating which functions t = t (n) can be pebbling thresholds in the multiset
model for some sequence of graphs. In particular, we verify the following conjecture posed in [2].

Conjecture 3. For every �(n1/2) � t1>t2 ∈ O(n) there exists a graph sequence G = (G1, . . . , Gn, . . .) such that
�M(G) ⊂ �(t1) ∩ O(t2).
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