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Hoàng–Reed conjecture holds for tournaments
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Abstract

Hoàng–Reed conjecture asserts that every digraph D has a collection C of circuits C1, . . . , C�+ , where �+ is the minimum
outdegree of D, such that the circuits of C have a forest-like structure. Formally, |V (Ci) ∩ (V (C1) ∪ · · · ∪ V (Ci−1))|�1, for all
i = 2, . . . , �+. We verify this conjecture for the class of tournaments.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

One of the most celebrated problems concerning digraphs is the Caccetta–Häggkvist conjecture (see [1]) asserting
that every digraph D on n vertices and with minimum outdegree n/k has a circuit of length at most k. Little is known
about this problem, and, more generally, questions concerning digraphs and involving the minimum outdegree tend to
be intractable. As a consequence, many open problems flourished in this area, see [4] for a survey. The Hoàng–Reed
conjecture [3] is one of these.

A circuit-tree is either a singleton or consists of a set of circuits C1, . . . , Ck such that |V (Ci) ∩ (V (C1) ∪ · · · ∪
V (Ci−1))| = 1 for all i = 2, . . . , k, where V (Cj ) is the set of vertices of Cj . A less explicit, yet concise, definition
is simply that a circuit-tree is a digraph in which there exists a unique xy-directed path for every distinct vertices x

and y. A vertex-disjoint union of circuit-trees is a circuit-forest. When all circuits have length three, we speak of a
triangle-tree. For short, a k-circuit-forest is a circuit-forest consisting of k circuits.

Conjecture 1 (Hoàng and Reed [3]). Every digraph has a �+-circuit-forest.

This conjecture is not even known to be true for �+ =3. In the case �+ =2, Thomassen [6] proved that every digraph
with minimum outdegree two has two circuits intersecting on a vertex (i.e. contains a circuit-tree with two circuits).
The motivation of the Hoàng–Reed conjecture is that it would imply the Caccetta–Häggkvist conjecture, as the reader can
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easily check. Our goal in this paper is to show Conjecture 1 for the class of tournaments, i.e. orientations of complete
graphs. Since this class is notoriously much simpler than general digraphs, our result is by no means a first step toward
a better understanding of the problem. However, it gives a little bit of insight in the triangle-structure of a tournament
T , that is the 3-uniform hypergraph on vertex set V which edges are the 3-circuits of T .

Indeed, if a tournament T has a �+-circuit-forest, by the fact that every circuit contains a directed triangle, T also
has a �+-triangle-forest. Observe that a �+-triangle-forest spans exactly 2�+ + c vertices, where c is the number of
components of the triangle-forest. When T is a regular tournament with outdegree �+, hence with 2�+ + 1 vertices, a
�+-triangle-forest of T is necessarily a spanning �+-triangle-tree. The main result of this paper establish the existence
of such a tree for every tournament.

Theorem 1. Every tournament has a �+-triangle-tree.

2. Components in bipartite graphs

We first need two lemmas in order to get lower bounds on the largest component of a bipartite graph in terms of the
number of edges.

Lemma 1. Let k�1 and let a1, a2, . . . , ak and b1, b2, . . . , bk be two sequences of positive reals. Let A=∑k
i=1ai and

B = ∑k
j=1bj . If

∑k
i=1aibi = (AB/2) + q, where q �0, then there is an i such that ai + bi �((A + B)/2) + √

2q.

Proof. If k = 1, then the lemma follows immediately as q = AB/2 and A + B �((A + B)/2) + √
AB. So assume

that k > 1. Without loss of generality, we may assume that (a1, b1)�(a2, b2)� · · · �(ak, bk) in the lexicographical
order. Let r be the minimum value such that br �bi for all i = 1, 2, . . . , k. Note that a1 � |A|/2, since otherwise∑k

i=1aibi <
∑k

i=1Abi/2 = AB/2. Analogously br � |B|/2. Define a′ and b′ so that a1 = A/2 + a′ and br = B/2 + b′.
If r �= 1, then the following holds:

k∑
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k∑

i=2

aibr
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.

As q �0, this implies we have equality everywhere above, which means that b1 = B − br . As B = b1 + br , we must
have k = 2. As there was equality everywhere above we have b′ = 0 or a′ = 0 which implies that a1 = a2 = A/2 or
b1 = b2 = B/2. In both cases we would have r = 1, a contradiction.

Suppose now that r = 1. Then

AB

2
+ q �a1b1 + (A − a1)(B − b1) =
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This implies that q �2a′b′. The minimum value of a′ +b′ is obtained when a′ =b′ =√
q/2. Therefore, the minimum

value of a1 + b1 is A/2 + B/2 + 2
√

q/2. This completes the proof of the lemma. �

Corollary 1. Let G be a bipartite graph with partite sets A and B. If |E(G)| = (|A||B|/2)+ q, where q �0, then there
is a component in G of size at least |V (G)|/2 + √

2q.
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