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Abstract

Let G = (V , E) be a graph. A set S ⊆ V is a dominating set of G if every vertex not in S is adjacent with some vertex in S. The
domination number of G, denoted by �(G), is the minimum cardinality of a dominating set of G. A set S ⊆ V is a paired-dominating
set of G if S dominates V and 〈S〉 contains at least one perfect matching. The paired-domination number of G, denoted by �p(G),
is the minimum cardinality of a paired-dominating set of G. In this paper, we provide a constructive characterization of those trees
for which the paired-domination number is twice the domination number.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Let G=(V , E) be a graph with vertex set V and edge set E. The open neighborhood of a vertex v ∈ V is N(v)={u ∈
V |uv ∈ E}, the set of vertices adjacent to v. The closed neighborhood of v is N [v] = N(v) ∪ {v}. For S ⊆ V , the
open neighborhood of S is defined by N(S) = ∪v∈S N(v), and the closed neighborhood of S by N [S] = N(S) ∪ S.
The private neighborhood PN(v, S) of v ∈ S is defined by PN(v, S) = N(v) − N [S − {v}]. The private neighborhood
PN(S′, S) of S′ ⊂ S is defined by PN(S′, S) = N(S′) − N [S − S′]. The subgraph of G induced by the vertices in S is
denoted by 〈S〉. For X, Y ⊆ V, if X dominates Y, we write X 	 Y , or X 	 G if Y = V , or X 	 y if Y = {y}.

A set S ⊆ V is a dominating set of G if every vertex not in S is adjacent to some vertex in S. (That is, N [S] = V .)
The domination number of G, denoted by �(G), is the minimum cardinality of a dominating set of G. A dominating
set of G of cardinality �(G) is called a �-set of G (similar notation is used for the other domination parameters).

Let G = (V , E) be a graph without isolated vertices. A set S ⊆ V is a paired-dominating set of G if S dominates
V and 〈S〉 contains at least one perfect matching M. If an edge uv ∈ M , we say that u and v are paired in S. The
paired-domination number of G, denoted by �p(G), is the minimum cardinality of a paired-dominating set of G. Paired-
domination in graphs was introduced by Haynes and Slater [7]. Recall that a dominating set S ⊆ V of G is a total
dominating set if 〈S〉 contains no isolated vertices. The total domination number of G, denoted by �t(G), is the minimum
cardinality of a total dominating set of G. Clearly, �t(G)��p(G) for every connected graph with order at least two.
Total domination in graphs was introduced by Cockayne et al. [1]. The concept of domination in graphs, with its many
variations, is well studied in graph theory (see [4,5]).
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An area of research in domination of graphs that has received considerable attention is the study of classes of
graphs with equal domination parameters. For any two graph theoretic parameters � and �, G is called a (�, �)-graph
if �(G) = �(G). The class of (�, i)-trees, that is, trees with equal domination and independent domination numbers
was characterized in [2]. In [3], the authors provided a constructive characterization of trees with equal independent
domination and restrained domination numbers, and a constructive characterization of trees with equal independent
domination and weak domination numbers is also given. In [9], the authors characterized those trees with equal
domination and paired-domination numbers. In [8], those trees with equal domination and total domination numbers
were characterized. In [6], the authors provided a constructive characterization of the trees T for which (1) �(T ) ≡ i(T );
(2) �(T ) ≡ �t(T ); and (3) �(T ) ≡ �p(T ).

Clearly, if G has a paired-dominating set, then �p(G) is even. For the domination and paired-domination numbers,
we have

Fact 1 (Haynes and Slater [7]). Let G be a graph without isolated vertices. Then, G has a paired-dominating set, and
�p(G)�2�(G).

In this paper, we give a constructive characterization of trees for which the paired-domination number is twice the
domination number.

2. Main result

Let T = (V , E) be a tree with vertex set V and edge set E. A vertex of T is said to be remote if it is adjacent to a
leaf. The set of leaves of T is denoted by L(T ). In this paper, we use Tv to denote the subtree of T − uv containing v

for uv ∈ E(T ). P� represents a path with l vertices. |T | denotes the order of a tree T.
We begin with a proposition about the paired-dominating set of a tree T.

Proposition 2. If S is a �p-set of a tree T, then 〈S〉 contains a unique perfect matching.

Proof. Let H be a component of 〈S〉, then H has a perfect matching. So |H | is even. To prove that 〈S〉 contains a
unique perfect matching, it is enough to show that H has a unique perfect matching. We prove H has a unique perfect
matching by induction on 2n, the order of H. If n = 1, then H�K2, the result is clearly true. Let n > 1 and assume
that the result is true for every tree H ′ of order < 2n, where H ′ is a tree containing a perfect matching. Let H be a tree
of order 2n containing a perfect matching M. Let u be a leaf of H and v be the remote vertex such that uv ∈ E(H).
Then uv ∈ M and u is the unique leaf adjacent to v in H. Let H1, H2, . . . , Hk be the components of H − {u, v}. Then
every Hi has a perfect matching and |Hi | < 2n. By inductive hypothesis, Hi has a unique perfect matching Mi . So,
M = (∪k

i=1 Mk) ∪ {u, v} is the unique perfect matching of H. The result follows. �

Let S be a paired-dominating set of a tree T. By Proposition 2, S has a unique perfect matching M. So, for any vertex
v ∈ S, the paired vertex of v is unique. We denote the unique paired vertex of v ∈ S by v̄.

To state the characterization of (2�, �p)-trees, we introduce three types of operations.
Type-1 operation: Attach a path P1 to a vertex v of a tree T, where v is in a �-set of T and v /∈ L(T ). (As shown in

Fig. 1(a).)
Type-2 operation: Attach a path P2 to a vertex v of a tree T, where v is a vertex such that for every �p-set S of T

containing v, PN(v, S) = ∅ and PN({v, v̄}, S) �= ∅. (As shown in Fig. 1(b).)
Type-3 operation: Attach a path P3 to a vertex v of a tree T, where either v is a vertex of a �-set of T such that

v /∈ L(T ) and, for every �p-set S of T, PN({v, v̄}, S) �= ∅ if v̄ /∈ L(T ), or v is a vertex such that for every �p-set S of T
containing v, v̄ /∈ N(S − {v, v̄}) if PN({v, v̄}, S) = ∅. (As shown in Fig. 1(c).)

Let Jp be the family of trees for which the paired-domination number is twice the domination number, that is

Jp = {T : �p(T ) = 2�(T )}.
We define the family Fp as:
Fp = {T : T is obtained from P3 by a finite sequence of operations of Type-1, Type-2 or Type-3}.
We shall prove that
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