

Available online at www.sciencedirect.com

Discrete Mathematics 308 (2008) 1080-1087

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

Nordhaus-Gaddum results for restrained domination and total restrained domination in graphs

Johannes H. Hattingh^a, Elizabeth Jonck^b, Ernst J. Joubert^b, Andrew R. Plummer^a

^aDepartment of Mathematics and Statistics, University Plaza, Georgia State University, Atlanta, GA 30303, USA ^bDepartment of Mathematics, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa

Received 4 February 2006; received in revised form 16 February 2007; accepted 27 March 2007 Available online 4 April 2007

Abstract

Let G = (V, E) be a graph. A set $S \subseteq V$ is a total restrained dominating set if every vertex is adjacent to a vertex in S and every vertex of V - S is adjacent to a vertex in V - S. A set $S \subseteq V$ is a restrained dominating set if every vertex in V - S is adjacent to a vertex in S and to a vertex in V - S. The total restrained domination number of G (restrained domination number of G, respectively), denoted by $\gamma_{tr}(G)$ ($\gamma_r(G)$, respectively), is the smallest cardinality of a total restrained dominating set (restrained dominating set, respectively) of G. We bound the sum of the total restrained domination numbers of a graph and its complement, and provide characterizations of the extremal graphs achieving these bounds. It is known (see [G.S. Domke, J.H. Hattingh, S.T. Hedetniemi, R.C. Laskar, L.R. Markus, Restrained domination in graphs, Discrete Math. 203 (1999) 61–69.]) that if G is a graph of order $n \ge 2$ such that both G and \overline{G} are not isomorphic to P_3 , then $4 \le \gamma_r(G) + \gamma_r(\overline{G}) \le n + 2$. We also provide characterizations of the extremal graphs G of order n achieving these bounds.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Restrained; Total; Domination; Nordhaus-Gaddum

1. Introduction

In this paper, we follow the notation of [1]. Specifically, let G = (V, E) be a graph with vertex set V and edge set E. A set $S \subseteq V$ is a *dominating set*, denoted DS, of G if every vertex not in S is adjacent to a vertex in S. The *domination number* of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set. The concept of domination in graphs, with its many variations, is now well studied in graph theory. The recent book of Chartrand and Lesniak [1] includes a chapter on domination. A thorough study of domination appears in [6,7].

In this paper, we continue the study of two variations of the domination theme, namely that of restrained domination [4,3,5,8] and total restrained domination [2,11].

A set $S \subseteq V$ is a total restrained dominating set, denoted TRDS, if every vertex is adjacent to a vertex in S and every vertex in V - S is also adjacent to a vertex in V - S. Every graph without isolated vertices has a total restrained dominating set, since S = V is such a set. The *total restrained domination number* of G, denoted by $\gamma_{tr}(G)$, is the minimum cardinality of a TRDS of G.

E-mail address: jhhattingh@gsu.edu (J.H. Hattingh).

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2007.03.061

A set $S \subseteq V$ is a *restrained dominating set*, denoted RDS, if every vertex in V - S is adjacent to a vertex in S and a vertex in V - S. Every graph has a restrained dominating set, since S = V is such a set. The *restrained domination number* of G, denoted by $\gamma_r(G)$, is the minimum cardinality of a RDS of G. If u, v are vertices of G, then the distance between u and v will be denoted by d(u, v).

Nordhaus and Gaddum present best possible bounds on the sum of the chromatic number of a graph and its complement in [10]. The corresponding result for the domination number is presented by Jaeger and Payan in [9]: If *G* is a graph of order $n \ge 2$, then $\gamma(G) + \gamma(\overline{G}) \le n + 1$. A best possible bound on the sum of the restrained domination numbers of a graph and its complement is obtained in [3]:

Theorem 1. If G is a graph of order $n \ge 2$ such that both G and \overline{G} are not isomorphic to P_3 , then $4 \le \gamma_r(G) + \gamma_r(\overline{G}) \le n+2$.

A best possible bound on the sum of the total restrained domination numbers of a graph and its complement is obtained in [2]:

Theorem 2. If G is a graph of order $n \ge 2$ such that neither G nor \overline{G} contains isolated vertices or has diameter two, then $\gamma_{tr}(G) + \gamma_{tr}(\overline{G}) \le n + 4$.

Let *K* be the graph obtained from K_3 by matching the vertices of \overline{K}_2 to distinct vertices of K_3 . Note that *K* is selfcomplementary, *K* nor \overline{K} contains isolated vertices or has diameter two, while $\gamma_{tr}(K) + \gamma_{tr}(\overline{K}) = 2 \times 5 = 10 > n(K) + 4$. Thus, Theorem 2 is incorrect.

We will show, in Section 2, that if *G* is a graph of order $n \ge 2$ such that neither *G* nor \overline{G} contains isolated vertices or is isomorphic to *K*, then $4 \le \gamma_{tr}(G) + \gamma_{tr}(\overline{G}) \le n + 4$. Moreover, we will characterize the graphs *G* of order *n* for which $\gamma_{tr}(G) + \gamma_{tr}(\overline{G}) = n + 4$ and also characterize those graphs *G* for which $\gamma_{tr}(G) + \gamma_{tr}(\overline{G}) = 4$. In Section 3, we characterize the graphs *G* of order *n* for which $\gamma_{r}(G) + \gamma_{r}(\overline{G}) = n + 2$ as well as those graphs *G* for which $\gamma_{r}(G) + \gamma_{r}(\overline{G}) = 4$.

2. Total restrained domination

In this section, we provide bounds on the sum of the total restrained domination numbers of a graph and its complement, and provide characterizations of the extremal graphs achieving these bounds.

Let $n \ge 5$ be an integer and suppose $\{x, y, u, v\}$ and X are disjoint sets of vertices such that |X| = n - 4. Let \mathscr{L} be the family of graphs G of order n where $V(G) = \{x, y, u, v\} \cup X$ and with the following properties:

- (P1) x and y are non-adjacent, while u and v are adjacent;
- (P2) each vertex in $\{x, y\} \cup X$ is adjacent to some vertex of $\{u, v\}$;
- (P3) each vertex in $\{u, v\} \cup X$ is non-adjacent to some vertex of $\{x, y\}$;
- (P4) each vertex in $\{x, y\} \cup X$ is adjacent to some vertex of $\{x, y\} \cup X$;
- (P5) each vertex in $\{u, v\} \cup X$ is non-adjacent to some vertex of $\{u, v\} \cup X$.

Theorem 3. If G is a graph of order $n \ge 2$ such that neither G nor \overline{G} contains isolated vertices, then $\gamma_{tr}(G) + \gamma_{tr}(\overline{G}) = 4$ if and only if $G \in \mathscr{L}$.

Proof. Suppose *G* is a graph such that neither *G* nor \overline{G} contains isolated vertices, and suppose $\gamma_{tr}(G) + \gamma_{tr}(\overline{G}) = 4$. Then $\gamma_{tr}(G) = \gamma_{tr}(\overline{G}) = 2$. Let $S = \{u, v\}$ ($S' = \{x, y\}$, respectively) be a TRDS of *G* (\overline{G} , respectively). Then *x* is non-adjacent to *y*, while *u* is adjacent to *v*, and Property (P1) holds. Clearly, $S \neq S'$. Suppose u = x with $v \neq y$. Since $\{u, v\}$ is a DS of *G* and *y* is non-adjacent to x = u, the vertex *y* must be adjacent to *v*. But then *v* is not dominated by S' in \overline{G} , which is a contradiction. Thus, $S \cap S' = \emptyset$. Let $X = V(G) - \{x, y, u, v\}$. Then |X| = n - 4, and since S(S', respectively) is a TRDS of *G* (\overline{G} , respectively), Properties (P2)–(P5) hold for *G*. Thus, $G \in \mathscr{L}$. The converse clearly holds as $\{u, v\}$ ($\{x, y\}$, respectively) is a TRDS of *G* (\overline{G} , respectively). Download English Version:

https://daneshyari.com/en/article/4650730

Download Persian Version:

https://daneshyari.com/article/4650730

Daneshyari.com