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Abstract

Let G = (V , E) be a graph. A set S ⊆ V is a total restrained dominating set if every vertex is adjacent to a vertex in S and
every vertex of V − S is adjacent to a vertex in V − S. A set S ⊆ V is a restrained dominating set if every vertex in V − S is
adjacent to a vertex in S and to a vertex in V − S. The total restrained domination number of G (restrained domination number of
G, respectively), denoted by �tr(G) (�r(G), respectively), is the smallest cardinality of a total restrained dominating set (restrained
dominating set, respectively) of G. We bound the sum of the total restrained domination numbers of a graph and its complement,
and provide characterizations of the extremal graphs achieving these bounds. It is known (see [G.S. Domke, J.H. Hattingh, S.T.
Hedetniemi, R.C. Laskar, L.R. Markus, Restrained domination in graphs, Discrete Math. 203 (1999) 61–69.]) that if G is a graph of
order n�2 such that both G and G are not isomorphic to P3, then 4��r(G) + �r(G)�n + 2. We also provide characterizations of
the extremal graphs G of order n achieving these bounds.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we follow the notation of [1]. Specifically, let G= (V , E) be a graph with vertex set V and edge set E.
A set S ⊆ V is a dominating set, denoted DS, of G if every vertex not in S is adjacent to a vertex in S. The domination
number of G, denoted by �(G), is the minimum cardinality of a dominating set. The concept of domination in graphs,
with its many variations, is now well studied in graph theory. The recent book of Chartrand and Lesniak [1] includes a
chapter on domination. A thorough study of domination appears in [6,7].

In this paper, we continue the study of two variations of the domination theme, namely that of restrained domination
[4,3,5,8] and total restrained domination [2,11].

A set S ⊆ V is a total restrained dominating set, denoted TRDS, if every vertex is adjacent to a vertex in S and
every vertex in V − S is also adjacent to a vertex in V − S. Every graph without isolated vertices has a total restrained
dominating set, since S = V is such a set. The total restrained domination number of G, denoted by �tr(G), is the
minimum cardinality of a TRDS of G.
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A set S ⊆ V is a restrained dominating set, denoted RDS, if every vertex in V − S is adjacent to a vertex in S and
a vertex in V − S. Every graph has a restrained dominating set, since S = V is such a set. The restrained domination
number of G, denoted by �r(G), is the minimum cardinality of a RDS of G. If u, v are vertices of G, then the distance
between u and v will be denoted by d(u, v).

Nordhaus and Gaddum present best possible bounds on the sum of the chromatic number of a graph and its com-
plement in [10]. The corresponding result for the domination number is presented by Jaeger and Payan in [9]: If G is a
graph of order n�2, then �(G)+�(G)�n+1. A best possible bound on the sum of the restrained domination numbers
of a graph and its complement is obtained in [3]:

Theorem 1. If G is a graph of order n�2 such that both G and G are not isomorphic to P3, then 4��r(G)+ �r(G)�
n + 2.

A best possible bound on the sum of the total restrained domination numbers of a graph and its complement is
obtained in [2]:

Theorem 2. If G is a graph of order n�2 such that neither G nor G contains isolated vertices or has diameter two,
then �tr(G) + �tr(G)�n + 4.

Let K be the graph obtained from K3 by matching the vertices of K2 to distinct vertices of K3. Note that K is self-
complementary, K nor K contains isolated vertices or has diameter two, while �tr(K)+�tr(K)=2×5=10 > n(K)+4.
Thus, Theorem 2 is incorrect.

We will show, in Section 2, that if G is a graph of order n�2 such that neither G nor G contains isolated vertices
or is isomorphic to K, then 4��tr(G) + �tr(G)�n + 4. Moreover, we will characterize the graphs G of order n for
which �tr(G) + �tr(G) = n + 4 and also characterize those graphs G for which �tr(G) + �tr(G) = 4. In Section 3, we
characterize the graphs G of order n for which �r(G) + �r(G) = n + 2 as well as those graphs G for which �r(G) +
�r(G) = 4.

2. Total restrained domination

In this section, we provide bounds on the sum of the total restrained domination numbers of a graph and its comple-
ment, and provide characterizations of the extremal graphs achieving these bounds.

Let n�5 be an integer and suppose {x, y, u, v} and X are disjoint sets of vertices such that |X| = n − 4. Let L be
the family of graphs G of order n where V (G) = {x, y, u, v} ∪ X and with the following properties:

(P1) x and y are non-adjacent, while u and v are adjacent;
(P2) each vertex in {x, y} ∪ X is adjacent to some vertex of {u, v};
(P3) each vertex in {u, v} ∪ X is non-adjacent to some vertex of {x, y};
(P4) each vertex in {x, y} ∪ X is adjacent to some vertex of {x, y} ∪ X;
(P5) each vertex in {u, v} ∪ X is non-adjacent to some vertex of {u, v} ∪ X.

Theorem 3. If G is a graph of order n�2 such that neither G nor G contains isolated vertices, then �tr(G)+�tr(G)=4
if and only if G ∈ L.

Proof. Suppose G is a graph such that neither G nor G contains isolated vertices, and suppose �tr(G) + �tr(G) = 4.
Then �tr(G) = �tr(G) = 2. Let S = {u, v} (S′ = {x, y}, respectively) be a TRDS of G (G, respectively). Then x is
non-adjacent to y, while u is adjacent to v, and Property (P1) holds. Clearly, S �= S′. Suppose u = x with v �= y. Since
{u, v} is a DS of G and y is non-adjacent to x = u, the vertex y must be adjacent to v. But then v is not dominated by
S′ in G, which is a contradiction. Thus, S ∩ S′ = ∅. Let X = V (G) − {x, y, u, v}. Then |X| = n − 4, and since S (S′,
respectively) is a TRDS of G (G, respectively), Properties (P2)–(P5) hold for G. Thus, G ∈ L. The converse clearly
holds as {u, v} ({x, y}, respectively) is a TRDS of G (G, respectively). �
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