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Abstract

A recent proof that the Grassmannian G1,n,2 of lines of PG(n, 2) has polynomial degree
(n

2
) − 1 is outlined, and is shown to

yield a theorem about certain kinds of subgraphs of any (simple) graph � = (V,E) such that |E|< |V|. Somewhat similarly, the
polynomial degree of the Segre variety Sm,n,2, m�n, is shown to be mn+m, and in consequence a graph theory result is obtained
about certain subgraphs of any graph � which is a subgraph of the complete bipartite graph Km+1,n+1.
© 2007 Elsevier B.V. All rights reserved.
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1. The polynomial degree of a subset � of PG(N, 2)

In succeeding sections we will be interested in the polynomial degrees of the following varieties over the finite field
GF(2):

(i) the Grassmann variety G1,n,2 of the lines of PG(n, 2), considered as a subset of points of the finite projective space

PG(
(

n+1
2

)
− 1, 2)= P(∧2Vn+1,2);

(ii) the Segre variety Sm,n,2, considered as a subset of points of the finite projective space PG(mn + m + n, 2) =
P(Vm+1,2 ⊗ Vn+1,2).

However, it will help to first consider material concerned with the polynomial degree of a general subset � of points
of a general finite projective space PG(N, 2)= P(V ), where V = VN+1 = V (N + 1, 2).

For the most part the notation will be as in [11]. In particular S = PG(0)(N, 2) denotes the set of points (0-flats)
of PG(N, 2) = P(V ), and we identify S with the nonzero vectors V \{0} of the vector space V . The set F(V ) of all
functions V → GF(2) is a vector space over GF(2) of dimension |V | = 2N+1, and its elements are the characteristic
functions �(�), also denoted ��, of the subsets � ⊆ V . In the case when � is a singleton set {a}, a ∈ V , we put
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�a := �{a}. In fact, rather than F(V ), our main focus is on the vector subspace F(S), of dimension |S| = 2N+1 − 1
over GF(2), consisting of all functions S → GF(2).

Upon choosing a basis B = {e1, e2, . . . , eN+1} for V an element x ∈ V may be viewed as an (N + 1)-tuple
(x1, x2, . . . , xN+1) ∈ GF(2)N+1. The basis B for V gives rise to an associated monomial basis M for F(S), namely

M= �1 ∪ �2 ∪ · · · ∪ �N+1 where �r = {xi1xi2 . . . xir }1� i1<i2<···<ir �N+1. (1.1)

If �c denotes the complement within the set S of � then �(�) + �(�c) = I , where I denotes that element of F(S)

such that I (x)= 1 for all x ∈ S. The characteristic functions �a, a ∈ S, have the coordinate expression:

�a(x)= �0(a + x) where �0(x)=
N+1∏
i=1

(1+ xi), (1.2)

and I = �(S) has the coordinate expression

I (x)= 1+
N+1∏
i=1

(1+ xi)=
∑

i

xi +
∑
i<j

xixj + · · · + x1x2 . . . xN+1. (1.3)

This last expression (1.3) may be viewed as the special case r =N + 1, Xc= S, of the following easily verified result:

if X is an (N − r)-flat in PG(N, 2) which is the intersection of the r hyperplanes

f1(x)= 0, . . . , fr (x)= 0, then

�(Xc)= 1+
r∏

i=1

(1+ fi)=
∑

i

fi +
∑
i<j

fifj +
∑

i<j<k

fifjfk + · · · + f1f2 . . . fr . (1.4)

For r > 0, let Fr=Fr(S) denote the subspace of F(S) which consists of functions f expressible as a polynomial function
f (x1, x2, . . . , xN+1) with deg f �r and f (0)= 0; we put F0 := {0}. The subspaces Fr are thus nested:

{0} = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ FN ⊂ FN+1 = F(S), (1.5)

with Fr, r �1, possessing the monomial basis Mr where

Mr = �1 ∪ �2 ∪ · · · ∪ �r , 1�r �N + 1. (1.6)

Observing that �N+1 consists of the single monomial mN+1 := x1x2 . . . xN+1, it follows from (1.2) that FN consists
of the characteristic functions of all even (|�| ≡ 0 mod 2) subsets � of S.

The subspaceFr ofF(S)has just been given an algebraic definition, but there exists an equivalent geometric definition,
namely as that subspace of F(S) which is generated by the characteristic functions �(Xc) of the complements Xc of
the (N − r)-flats X of PG(N, 2). For if we define subspaces Cr , 0�r < N , of F(S) by

Cr= ≺ �(Xc)�X∈PG(r)(N,2), (1.7)

then it can be shown, see [11, Theorem 1.5], cf. [1, Section 5.3], that

CN−r = Fr, r = 1, 2, . . . , N . (1.8)

Setting Q� := �(�c), a subset � of S has equation Q�(x)= 0. If Q� ∈ Fr\Fr−1 we will say that � has polynomial
degree r , and we write deg Q� = r for the degree of Q�. (Here deg Q� is the reduced degree of Q�; if deg Q� = r

then of course, see (1.5), Q� ∈ Fs for each s�r .) Recall that the subspace C0 = FN consists of the characteristic
functions of all the even subsets of S. Consequently if � is an odd subset of S (and so �c is an even subset) then � has
polynomial degree �N . On the other hand, since �(�) + �(�c) = I , and deg I = N + 1, an even subset always has
polynomial degree N + 1.

In general the determination of the polynomial degree of a subset � ⊂ S is a formidable problem—and especially
so if a direct algebraic approach is attempted, based for example upon (1.2). But quite often progress can be made by
using a geometrical approach based upon the next theorem.
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