

Available online at www.sciencedirect.com



Discrete Mathematics 308 (2008) 872-879



www.elsevier.com/locate/disc

# The polynomial degrees of Grassmann and Segre varieties over GF(2)

## R. Shaw

Centre for Mathematics, University of Hull, Hull HU6 7RX, UK

Received 12 July 2005; accepted 11 July 2007 Available online 24 August 2007

#### **Abstract**

A recent proof that the Grassmannian  $\mathscr{G}_{1,n,2}$  of lines of  $\operatorname{PG}(n,2)$  has polynomial degree  $\binom{n}{2}-1$  is outlined, and is shown to yield a theorem about certain kinds of subgraphs of any (simple) graph  $\Gamma=(\mathscr{V},\mathscr{E})$  such that  $|\mathscr{E}|<|\mathscr{V}|$ . Somewhat similarly, the polynomial degree of the Segre variety  $\mathscr{L}_{m,n,2}, m \leq n$ , is shown to be mn+m, and in consequence a graph theory result is obtained about certain subgraphs of any graph  $\Gamma$  which is a subgraph of the complete bipartite graph  $K_{m+1,n+1}$ . © 2007 Elsevier B.V. All rights reserved.

MSC: 51E20; 05C30; 05C90; 14G25

*Keywords:* Polynomial degree; Grassmannian  $\mathcal{G}_{1,n,2}$ ; Segre variety  $\mathcal{G}_{m,n,2}$ ; Subgraph enumerations

#### 1. The polynomial degree of a subset $\psi$ of PG(N, 2)

In succeeding sections we will be interested in the polynomial degrees of the following varieties over the finite field GF(2):

- (i) the Grassmann variety  $\mathscr{G}_{1,n,2}$  of the lines of PG(n,2), considered as a subset of points of the finite projective space  $PG(\binom{n+1}{2}-1,2) = \mathbb{P}(\wedge^2 V_{n+1,2});$
- (ii) the Segre variety  $\mathcal{S}_{m,n,2}$ , considered as a subset of points of the finite projective space  $PG(mn + m + n, 2) = \mathbb{P}(V_{m+1,2} \otimes V_{n+1,2})$ .

However, it will help to first consider material concerned with the polynomial degree of a general subset  $\psi$  of points of a general finite projective space  $PG(N, 2) = \mathbb{P}(V)$ , where  $V = V_{N+1} = V(N+1, 2)$ .

For the most part the notation will be as in [11]. In particular  $S = PG^{(0)}(N, 2)$  denotes the set of points (0-flats) of  $PG(N, 2) = \mathbb{P}(V)$ , and we identify S with the nonzero vectors  $V \setminus \{0\}$  of the vector space V. The set F(V) of all functions  $V \to GF(2)$  is a vector space over GF(2) of dimension  $|V| = 2^{N+1}$ , and its elements are the characteristic functions  $\chi(\psi)$ , also denoted  $\chi_{\psi}$ , of the subsets  $\psi \subseteq V$ . In the case when  $\psi$  is a singleton set  $\{a\}$ ,  $a \in V$ , we put

E-mail address: r.shaw@hull.ac.uk.

 $\chi_a := \chi_{\{a\}}$ . In fact, rather than F(V), our main focus is on the vector subspace F(S), of dimension  $|S| = 2^{N+1} - 1$  over GF(2), consisting of all functions  $S \to GF(2)$ .

Upon choosing a basis  $\mathscr{B} = \{e_1, e_2, \dots, e_{N+1}\}$  for V an element  $x \in V$  may be viewed as an (N+1)-tuple  $(x_1, x_2, \dots, x_{N+1}) \in GF(2)^{N+1}$ . The basis  $\mathscr{B}$  for V gives rise to an associated *monomial basis*  $\mathscr{M}$  for F(S), namely

$$\mathcal{M} = \Xi_1 \cup \Xi_2 \cup \dots \cup \Xi_{N+1} \quad \text{where } \Xi_r = \{x_{i_1} x_{i_2} \dots x_{i_r}\}_{1 \le i_1 \le i_2 \le \dots \le i_r} \le N+1.$$

If  $\psi^c$  denotes the complement within the set S of  $\psi$  then  $\chi(\psi) + \chi(\psi^c) = I$ , where I denotes that element of F(S) such that I(x) = 1 for all  $x \in S$ . The characteristic functions  $\chi_a$ ,  $a \in S$ , have the coordinate expression:

$$\chi_a(x) = \chi_0(a+x) \quad \text{where } \chi_0(x) = \prod_{i=1}^{N+1} (1+x_i),$$
(1.2)

and  $I = \chi(S)$  has the coordinate expression

$$I(x) = 1 + \prod_{i=1}^{N+1} (1 + x_i) = \sum_{i} x_i + \sum_{i < i} x_i x_j + \dots + x_1 x_2 \dots x_{N+1}.$$
 (1.3)

This last expression (1.3) may be viewed as the special case r = N + 1,  $X^c = S$ , of the following easily verified result:

if X is an (N-r)-flat in PG(N,2) which is the intersection of the r hyperplanes

$$f_1(x) = 0, \dots, f_r(x) = 0$$
, then

$$\chi(X^{c}) = 1 + \prod_{i=1}^{r} (1 + f_{i}) = \sum_{i} f_{i} + \sum_{i < j} f_{i} f_{j} + \sum_{i < j < k} f_{i} f_{j} f_{k} + \dots + f_{1} f_{2} \dots f_{r}.$$

$$(1.4)$$

For r > 0, let  $F_r = F_r(S)$  denote the subspace of F(S) which consists of functions f expressible as a polynomial function  $f(x_1, x_2, ..., x_{N+1})$  with deg  $f \le r$  and f(0) = 0; we put  $F_0 := \{0\}$ . The subspaces  $F_r$  are thus nested:

$$\{0\} = F_0 \subset F_1 \subset F_2 \subset \dots \subset F_N \subset F_{N+1} = F(S), \tag{1.5}$$

with  $F_r$ ,  $r \ge 1$ , possessing the monomial basis  $\mathcal{M}_r$  where

$$\mathcal{M}_r = \Xi_1 \cup \Xi_2 \cup \dots \cup \Xi_r, \quad 1 \leqslant r \leqslant N + 1. \tag{1.6}$$

Observing that  $\Xi_{N+1}$  consists of the single monomial  $m_{N+1} := x_1 x_2 \dots x_{N+1}$ , it follows from (1.2) that  $F_N$  consists of the characteristic functions of all even ( $|\psi| \equiv 0 \mod 2$ ) subsets  $\psi$  of S.

The subspace  $F_r$  of F(S) has just been given an algebraic definition, but there exists an equivalent geometric definition, namely as that subspace of F(S) which is generated by the characteristic functions  $\chi(X^c)$  of the complements  $X^c$  of the (N-r)-flats X of PG(N,2). For if we define subspaces  $C_r$ ,  $0 \le r < N$ , of F(S) by

$$C_r = \langle \chi(X^c) \rangle_{\chi \in PG^{(r)}(N,2)}, \tag{1.7}$$

then it can be shown, see [11, Theorem 1.5], cf. [1, Section 5.3], that

$$C_{N-r} = F_r, \quad r = 1, 2, \dots, N.$$
 (1.8)

Setting  $Q_{\psi} := \chi(\psi^c)$ , a subset  $\psi$  of S has equation  $Q_{\psi}(x) = 0$ . If  $Q_{\psi} \in F_r \setminus F_{r-1}$  we will say that  $\psi$  has polynomial degree r, and we write deg  $Q_{\psi} = r$  for the degree of  $Q_{\psi}$ . (Here deg  $Q_{\psi}$  is the reduced degree of  $Q_{\psi}$ ; if deg  $Q_{\psi} = r$  then of course, see (1.5),  $Q_{\psi} \in F_s$  for each  $s \ge r$ .) Recall that the subspace  $C_0 = F_N$  consists of the characteristic functions of all the even subsets of S. Consequently if  $\psi$  is an odd subset of S (and so  $\psi^c$  is an even subset) then  $\psi$  has polynomial degree S S0. On the other hand, since  $\chi(\psi) + \chi(\psi^c) = I$ , and deg S0 is an even subset always has polynomial degree S1.

In general the determination of the polynomial degree of a subset  $\psi \subset S$  is a formidable problem—and especially so if a direct algebraic approach is attempted, based for example upon (1.2). But quite often progress can be made by using a geometrical approach based upon the next theorem.

## Download English Version:

# https://daneshyari.com/en/article/4650784

Download Persian Version:

https://daneshyari.com/article/4650784

Daneshyari.com