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Abstract

A graph G is said to be k-�-critical if the size of any minimum dominating set of vertices is k, but if any edge is added to G the
resulting graph can be dominated with k − 1 vertices. The structure of k-�-critical graphs remains far from completely understood
when k�3.

A graph G is factor-critical if G − v has a perfect matching for every vertex v ∈ V (G) and is bicritical if G − u − v has a perfect
matching for every pair of distinct vertices u, v ∈ V (G). More generally, a graph is said to be k-factor-critical if G− S has a perfect
matching for every set S of k vertices in G. In three previous papers [N. Ananchuen, M.D. Plummer, Some results related to the
toughness of 3-domination-critical graphs, Discrete Math. 272 (2003) 5–15; N. Ananchuen, M.D. Plummer, Matching properties in
domination critical graphs, Discrete Math. 277 (2004) 1–13; N. Ananchuen, M.D. Plummer, Some results related to the toughness
of 3-domination-critical graphs. II. Utilitas Math. 70 (2006) 11–32], we explored the toughness of 3-�-critical graphs and some of
their matching properties. In particular, we obtained some properties which are sufficient for a 3-�-critical graph to be factor-critical
and, respectively, bicritical. In the present work, we obtain similar results for k-factor-critical graphs when k = 3.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Let G denote a finite undirected graph with vertex set V (G) and edge set E(G). The minimum degree of all vertices
in G will be denoted by �(G). A set S ⊆ V (G) is a dominating set for G if every vertex of G either belongs to S or is
adjacent to a vertex of S. The minimum cardinality of a dominating set in graph G is called the domination number of
G and is denoted by �(G). Graph G is said to be k-�-critical if �(G)= k, but �(G+ e)= k − 1 for each edge e /∈ E(G).
In this paper, we will be concerned only with the case k = 3.

If u, v and w are vertices of G and u and v dominate G − w, we will follow previously accepted notation and write
[u, v] −→ w. Suppose G is 3-�-critical. If u and v are non-adjacent vertices of G, then �(G + uv) = 2 and so there is
a vertex x ∈ V (G) such that either [u, x] −→ v or [v, x] −→ u.

Sumner and Blitch [11] initiated work on matchings in 3-�-critical graphs and the following lemma of theirs will
prove very useful in our work to follow. A complete proof may be found in [11] together with [8].
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Fig. 1.

Lemma 1.1. Let G be a connected 3-�-critical graph and let S be an independent set of n�2 vertices in V (G).

(i) Then the vertices of S can be ordered a1, a2, . . . , an in such a way that there exists a sequence of distinct vertices
x1, x2, . . . , xn−1 so that [ai, xi] −→ ai+1 for i = 1, 2, . . . , n − 1.

(ii) If, in addition, n�4, then the xi’s can be chosen so that x1x2 · · · xn−1 is a path and S ∩ {x1, . . . , xn−1} = ∅.

In what is to follow, we shall also make frequent use of the following easy result.

Lemma 1.2. Let G be a 3-�-critical graph and let u and v be non-adjacent vertices of G. If x is a vertex of G such that
[u, x] −→ v, then xv /∈ E(G) and if x is a vertex of G with [v, x] −→ u then xu /∈ E(G).

In [1] the following result was obtained. (See also [5].)

Theorem 1.3. Let G be a connected 3-�-critical graph and let S be a vertex cutset in G. Then

(i) if |S|�4, G − S has at most |S| − 1 components,
(ii) if |S| = 3, then G − S contains at most |S| components, and if G − S has exactly three components, then each

component is complete and at least one is a singleton,
(iii) if |S| = 2, then G − S has at most three components and if G − S has exactly three components, then G must have

the structure shown in Fig. 1 and,
(iv) if |S| = 1, then G − S has two components, exactly one of which is a singleton. Furthermore, in case (iv), G has

at most three cutvertices. If it has three, G is isomorphic to the graph shown in Fig. 1 with n = 1. If it has two, G
is isomorphic to a graph of the family shown in Fig. 1 with n�2.

We refer the reader to [9] for further notation, terminology and background for matching theory. In particular, N(v)

will denote the neighborhood of vertex v, that is, the set of all vertices adjacent to v, and N [v] = N(v) ∪ {v} will
denote the closed neighborhood of v. In addition, we denote by �(G) the number of components of the graph G and
by �o(G), the number of components of odd order in G.

In order to prove our main results, we shall need the following two theorems from [3], both of which may be viewed
as extensions of Theorem 1.3.

Theorem 1.4. If G is a connected 3-�-critical graph and S is a vertex cutset in G, then if |S|�6, it follows that
�(G − S)� |S| − 2.



Download	English	Version:

https://daneshyari.com/en/article/4650847

Download	Persian	Version:

https://daneshyari.com/article/4650847

Daneshyari.com

https://daneshyari.com/en/article/4650847
https://daneshyari.com/article/4650847
https://daneshyari.com/

