

Available online at www.sciencedirect.com

DISCRETE MATHEMATICS

Discrete Mathematics 307 (2007) 3070-3075

www.elsevier.com/locate/disc

Note

p-adic valuations and *k*-regular sequences

Jason P. Bell

Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6

Received 6 October 2006; received in revised form 6 December 2006; accepted 13 March 2007 Available online 15 March 2007

Abstract

A sequence is said to be *k-automatic* if the *n*th term of this sequence is generated by a finite state machine with *n* in base *k* as input. Regular sequences were first defined by Allouche and Shallit as a generalization of automatic sequences. Given a prime *p* and a polynomial $f(x) \in \mathbb{Q}_p[x]$, we consider the sequence $\{v_p(f(n))\}_{n=0}^{\infty}$, where v_p is the *p*-adic valuation. We show that this sequence is *p*-regular if and only if f(x) factors into a product of polynomials, one of which has no roots in \mathbb{Z}_p , the other which factors into linear polynomials over \mathbb{Q} . This answers a question of Allouche and Shallit. \mathbb{O} 2007 Elsevier B.V. All rights reserved.

Keywords: Automatic sequences; k-regular sequences; Valuations; Polynomials

1. Introduction

A sequence is said to be *k*-automatic if the *n*th term of this sequence is generated by a finite state machine with *n* in base *k* as input. These sequences have found applications to many different areas of mathematics [3]. Another way of defining automaticity comes from looking at the *k*-kernel of a sequence. The *k*-kernel of a sequence $\{f(n)\}_{n=0}^{\infty}$ is defined to be the collection of sequences of the form $\{f(k^i n + j)\}_{n=0}^{\infty}$ where $i \ge 0$ and $0 \le j < k^i$. A sequence is *k*-automatic if and only if its *k*-kernel is finite. Using this definition of automaticity, Allouche and Shallit [1,3] generalized the notion of automaticity.

Given a sequence $\{f(n)\}_{n=0}^{\infty}$ taking values in some abelian group, we create a \mathbb{Z} -module $M(\{f(n)\}; k)$ which is defined to be the \mathbb{Z} -module generated by all sequences $\{f(k^i n + j)\}_{n=0}^{\infty}$, where $i \ge 0$ and $0 \le j < k^i$; that is,

$$M(\{f(n)\};k) := \sum_{i=0}^{\infty} \sum_{j=0}^{k^{i}-1} \mathbb{Z}\{f(k^{i}n+j)\}.$$
(1.1)

Definition 1.1. A sequence is *k*-regular if $M({f(n)}; k)$ is finitely generated as a \mathbb{Z} -module.

Since the k-kernel of a sequence $\{f(n)\}$ spans $M(\{f(n)\}; k)$ as a \mathbb{Z} -module, we see that an automatic sequence is necessarily regular.

E-mail address: jpb@math.sfu.ca.

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter @ 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2007.03.009

Given a prime number p, we have a p-adic valuation v_p with the property that for any integer n, $n = p^{v_p(n)}m$ for some divisor m of n with m relatively prime to p. In addition to this, the valuation satisfies the standard properties of a non-archimedian valuation; namely,

- $v_p(ab) = v_p(a) + v_p(b)$ for $a, b \in \mathbb{Q}_p$;
- $v_p(a+b) \ge \min(v_p(a), v_p(b))$; and
- $v_p(x) = \infty$ if and only if x = 0.

This valuation gives rise to an absolute value, denoted by $|\cdot|_p$, on \mathbb{Q}_p . It is defined by

$$|x|_p := p^{-v_p(x)}.$$
(1.2)

We are interested in sequences of the form $v_p(f(n))$, where f(n) is a polynomial with rational coefficients and which has no natural number roots. The reason we avoid considering polynomials which have natural number roots is because $v_p(0) = \infty$ and we only consider sequences with integer values. Allouche and Shallit [1,3] ask when such a sequence is *p*-regular. We give necessary and sufficient conditions for this to occur. Our main result is the following theorem.

Theorem 1.2. Let f(x) be a nonzero polynomial with rational coefficients and let p be a prime number. Then $v_p(f(n))$ is a p-regular sequence if and only if f(x) factors into a product of two polynomials, one of which splits over \mathbb{Q} and the other of which has no roots in \mathbb{Z}_p .

2. A well-known remark

We begin with a well-known result. We nevertheless include the proof for the sake of completeness.

Lemma 2.1. Let $f(x) \in \mathbb{Z}_p[x]$. Then f(x) has a root in \mathbb{Z}_p if and only if f(x) has a solution mod $p^n \mathbb{Z}_p$ for all n.

Proof. If f(x) has a root in \mathbb{Z}_p , then it is clear that it has a root mod $p^n \mathbb{Z}_p$ for all *n*. Conversely, suppose that it has a root $\alpha_n \in \mathbb{Z}_p \mod p^n \mathbb{Z}_p$ for all *n*. Then $f(\alpha_n) \in p^n \mathbb{Z}_p$. Consider the set $\{\alpha_n | n \ge 0\}$. This is an infinite subset of \mathbb{Z}_p , a compact set. By the Bolzano–Weierstrass theorem, it must have a limit point $\alpha \in \mathbb{Z}_p$. By continuity $f(\alpha) = 0$, and so f(x) has a root in \mathbb{Z}_p . \Box

We note that Hensel's lemma is an effective tool for testing whether or not a polynomial has a root in \mathbb{Z}_p .

Theorem 2.2 (Hensel's lemma). Let $f(x) \in \mathbb{Z}_p[x]$. Suppose that $|f(a)|_p < |f'(a)|_p^2$ for some $a \in \mathbb{Z}_p$. Then f(x) has a root in \mathbb{Z}_p .

Proof. See Theorem 7.3 of Eisenbud [4]. \Box

3. Proofs

We now introduce some notation which will simplify the proofs in this section.

Notation 3.1. Given a statement S, we define

$$\chi(S) = \begin{cases} 0 & \text{if } S \text{ is false}; \\ 1 & \text{if } S \text{ is true.} \end{cases}$$

Proposition 3.2. Let $\theta \in \mathbb{Z}_p \setminus \mathbb{Q}$. Then the sequence $\{v_p(n - \theta)\}$ is not p-regular.

Download English Version:

https://daneshyari.com/en/article/4650854

Download Persian Version:

https://daneshyari.com/article/4650854

Daneshyari.com