

Available online at www.sciencedirect.com

Discrete Mathematics 308 (2008) 175-179

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

Primitive 2-factorizations of the complete graph

Giuseppe Mazzuoccolo,1

Dipartimento di Matematica, Università di Modena e Reggio Emilia, via Campi 213/B, 41100 Modena, Italy

Received 30 November 2004; received in revised form 15 October 2005; accepted 2 February 2006 Available online 2 June 2007

Abstract

Let \mathscr{F} be a 2-factorization of the complete graph K_v admitting an automorphism group G acting primitively on the set of vertices. If \mathscr{F} consists of Hamiltonian cycles, then \mathscr{F} is the unique, up to isomorphisms, 2-factorization of K_{p^n} admitting an automorphism group which acts 2-transitively on the vertex-set, see [A. Bonisoli, M. Buratti, G. Mazzuoccolo, Doubly transitive 2-factorizations, J. Combin. Designs 15 (2007) 120–132.]. In the non-Hamiltonian case we construct an infinite family of examples whose automorphism group does not contain a subgroup acting 2-transitively on vertices. © 2007 Elsevier B.V. All rights reserved.

MSC: 05C70; 05C15; 05C25

Keywords: Factorization; Coloring of graphs and hypergraphs; Graphs and groups

1. Introduction

For an integer $v \ge 3$, let K_v be the complete (simple undirected) graph on v vertices with vertex-set $V(K_v)$ and edge set $E(K_v)$. For $3 \le k \le v$, a *k*-cycle $C = (x_0, x_1, \dots, x_{k-1})$ is the subgraph of K_v whose edges are $[x_i, x_{i+1}]$, $i = 0, \dots, k-1$, indices taken modulo k. If k = v, the cycle is called Hamiltonian.

A 2-factor F of K_v is a set of cycles whose vertices partition $V(K_v)$. A 2-factorization of K_v is a set \mathscr{F} of edge disjoint 2-factors forming a cover of $E(K_v)$. A 2-factorization in which all the 2-factors are isomorphic to a factor F is called an *F*-factorization. If each 2-factor of \mathscr{F} consists of a single Hamiltonian cycle, \mathscr{F} is called a *Hamiltonian 2-factorization*. The existence of a 2-factorization of K_v forces v to be odd.

The collection of cycles appearing in the factors of \mathscr{F} form a cycle decomposition of K_v , which is called the underlying decomposition. We will denote it by $\mathscr{D}_{\mathscr{F}}$.

A permutation group G acting faithfully on $V(K_v)$ and preserving the 2-factorization \mathcal{F} is called an *automorphism* group of \mathcal{F} .

In some recent papers the possible structures and actions of *G* on vertices or factors have been investigated. In [3] the situation in which *G* acts regularly (i.e. sharply transitively) on vertices is studied in detail. In [2] a complete description of *G* and \mathscr{F} is given in case the action of *G* is doubly transitive on the vertex-set. In particular it is proved that if \mathscr{F} is Hamiltonian, then *v* is an odd prime *p*, the group *G* is the affine general linear group AGL(1, *p*) and, if the vertices of

¹ Research performed with the financial support of the Italian Ministry MIUR, project "Strutture Geometriche, Combinatoria e loro Applicazioni". *E-mail address:* mazzuoccolo@unimore.it.

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter @ 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2006.02.017

 K_p are labelled by the elements of \mathbb{Z}_p , then $\mathscr{F} = \{C_1, C_2, \dots, C_{(p-1)/2}\}$, with $C_i = (0, i, 2i, \dots, (p-1)i)$ (subscripts mod p), $i = 1, 2, \dots, (p-1)/2$. This factorization is the *natural* 2-factorization (also denoted by $\mathscr{N}(\mathbb{Z}_p)$) which arises from the cyclic group \mathbb{Z}_p , see [3].

In this paper, we investigate primitive 2-factorizations, i.e. admitting an automorphism group G with primitive action on the vertex-set. Note that all 2-factorizations admitting an automorphism group doubly transitive on the vertex-set are also examples of primitive 2-factorizations.

If \mathscr{F} is Hamiltonian, we prove that v is an odd prime p and $\mathscr{F} = \mathcal{N}(\mathbb{Z}_p)$. Moreover, the group G is necessarily a subgroup of AGL(1, p) containing \mathbb{Z}_p . In the non-Hamiltonian case, we give examples of primitive 2-factorizations whose full automorphism group does not contain a subgroup acting doubly transitively on the vertices. In the last section we also prove that a primitive 2-factorization of K_9 is necessarily 2-transitive, whence a 2-factorization arising from the affine line parallelism of AG(2, 3) in a suitable manner, see [2], and a primitive 2-factorization of K_{15} does not exist.

2. The Hamiltonian case

In this section we prove that $\mathcal{N}(\mathbb{Z}_p)$ is the unique primitive Hamiltonian 2-factorization of a complete graph.

Lemma 1. Let \mathscr{F} be a 2-factorization of K_p with a transitive automorphism group G. Then $\mathscr{F} = \mathscr{N}(\mathbb{Z}_p)$ and $G \leq \operatorname{AGL}(1, p)$.

Proof. By transitivity of *G* on $V(K_p)$, the integer *p* is a divisor of the order of *G*, then an element $g \in G$ of order *p* exists. The cyclic group generated by *g* acts regularly on the vertex-set. By proposition 2.8 of [3], it is $\mathscr{F} = \mathscr{N}(\mathbb{Z}_p)$. The full group of automorphism of \mathscr{F} is AGL(1, *p*) (see [2], Section 1) and then $G \leq \text{AGL}(1, p)$. \Box

Theorem 1. Let \mathscr{F} be a Hamiltonian 2-factorization of K_v with primitive automorphism group G. Then v = p, $\mathscr{F} = \mathscr{N}(\mathbb{Z}_p)$ and $\mathbb{Z}_p \leq G \leq \operatorname{AGL}(1, p)$.

Proof. Suppose *G* is of even order. We prove that *G* contains exactly *v* involutions. First of all observe that each involution of *G* fixes all the 2-factors of \mathscr{F} . In fact let $g \in G$ be an involution exchanging two vertices x_0 and x_1 . Labelling the vertices such that $C = (x_0, x_1, \dots, x_{v-1})$ is the unique cycle of $\mathscr{D}_{\mathscr{F}}$ containing $[x_0, x_1]$, we obtain:

$$g(x_i) = x_{\nu+1-i}, \quad g(x_{\nu+1-i}) = x_i \quad \text{for } i = 1, \dots, \frac{\nu-1}{2},$$

 $g(x_{(\nu+1)/2}) = x_{(\nu+1)/2},$

where all indices are taken mod v. Then g fixes the vertex $x_{(v+1)/2}$ and each edge of the set $E = \{[x_i, x_{v+1-i}]/i =$ $1, \ldots, (v-1)/2$. Suppose that at least two edges of E belong to the same 2-factor F of \mathcal{F} . Then g should fix the unique cycle of F and two edges on it: a contradiction. We have proved that the elements in E are in different 2-factors. By the fact that the cardinality of E coincides with the number of 2-factors, we conclude that g fixes all the factors of \mathscr{F} . Furthermore we can also observe that each involution in G fixes exactly one vertex of $V(K_v)$. Let now $x \in V(K_v)$, we have $|G| = |G_x|v$, where G_x is the stabilizer of the vertex x, then $|G_x|$ is even and we have at least one involution in G_x . Observe that G_x contains exactly one involution; in fact if we fix a 2-factor F and C is its cycle, the action of an involution of G_x is uniquely determined by its action on the vertices of C as above explained. We can conclude that the group G contains exactly v distinct involutions. In particular for each factor F, the subgroup G_F contains v involutions: namely all the involutions of G. It is well known that $G_F \leq D_v$, the dihedral group on v vertices, and then $G_F \cong D_v$ for each $F \in \mathscr{F}$. Furthermore, for each factor $F' \in \mathscr{F} - \{F\}$, the dihedral groups G_F and G'_F contain exactly the same v involutions, therefore $G_F = G'_F$. Label the vertices of K_v by the elements $0, 1, \ldots, v-1$ in such a way that a 2-factor $F \in \mathscr{F}$ contains the cycle $(0, 1, \ldots, v-1)$ and an element of G_F of order v maps the vertex i onto i + 1, for each *i*. Denote by $g \in G_F$ this element. Suppose *v* is not a prime and let *h* be a proper divisor of *v*. Let $F' \in \mathscr{F}$ be the 2-factor containing the edge [0, h]. As $G_{F'} = G_F$ we have $g^h \in G_{F'}$ and then F' contains the cycle $(0, h, 2h, \dots, v - h)$ of length less than v: a contradiction. We conclude that v is a prime. By Lemma 1 the assertion follows in this case. We have proved that for a primitive Hamiltonian 2-factorization of K_v only two possibilities hold: either v is a prime or |G| is odd. By the O'Nan Scott Theorem (see [6]) and by the fact that a simple non-abelian group

Download English Version:

https://daneshyari.com/en/article/4650864

Download Persian Version:

https://daneshyari.com/article/4650864

Daneshyari.com