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Abstract

In this paper we consider an exchange space with congruence (P, £, =) not assuming any further geometrical properties. If the
dimension of the space is greater than 2, we show that for any line G of a plane E and any point x € G there is a unique perpendicular
line through x in E and that any line reflection is a motion.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

It is well known that every Euclidean plane (E, £, o, =) [2,9] is isomorphic to an affine plane AG(2, K) over an
ordered and pythagorean commutative field K (cf. [2] (24.5)). Here (E, £) denotes an affine plane, (E, £, o) an ordered
plane, and = denotes the congruence relation on E x E. We may consider E as a quadratic separable field extension
of K with the corresponding involutory field automorphism ~: E — E and we have (a, b) = (c, d) if and only if
(a@a—b)(a—>b)=(c—d)(c—d)forany points a, b,c,d € E.

There is a corresponding theorem for hyperbolic planes (cf. [2]). For both proofs one first considers the group of
motions, in particular the line reflections. For the definition of a motion and a line reflection the order relation is
not necessary. We need only the linear structure of (E, £) and the congruence relation =, but for the proof that the
line reflection is a motion it seems that additional assumptions on the geometry are necessary. For example Sorensen
assumes in [8] that for given lines G1, G», there exist distinct lines Hy, H» through a common point z which intersect
G1, G». Here we give a proof for exchange planes with congruence not using this property.

In a plane with congruence (E, £, =) two perpendicular lines may have an empty intersection. We show that if in
a plane any two perpendicular lines have an empty intersection, then the relation “perpendicular” together with the
“identity relation” is transitive (cf. Theorem 2.13).

If there are two perpendicular lines with a non-empty intersection, one can show that for any line G and any point
x € G we have a perpendicular line through x. But it is open if there is a unique perpendicular line to G through x.
This is true for finite or affine planes, but not known in general. In this paper we consider a space with congruence
(P, £, =) not assuming any further geometrical properties. (For special spaces with congruence cf. [5,6].) We only
assume that the space satisfies the exchange property, which for example can be easily shown for ordered spaces. In
Section 3 we assume that there are two points with a midpoint. We use the property that if two points have a midpoint,
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then they have a midline in every plane. If the dimension of the space is greater than 2, we show that for any line G
of a plane E and any point x € G there is a unique perpendicular line through x in E and that any line reflection is a
motion. It follows that for any two points b, z there exists a unique point b’ € z,_b\{b} with (z, b) = (z, b’) and also
point reflections are motions. For the case that there exist no points with a midpoint, we conjecture that all examples
in which the line reflections are motions have dimension 2.

2. Spaces with congruence

Let (P, £) denote a linear space or incidence space with the point set P, the line set £ and at least three points on
every line, i.e.,

e for any two points there is exactly one line containing them and
e for any line L € £ we have |L|>3.

A subspace is a subset U C P such that for all distinct points x, y € U the unique line passing through x and y, denoted
by X, vy, is contained in U. Let 2 denote the set of all subspaces. For every subset X C P we define the following
closure operation

THPP) > U XX by Xi= (U (1)
Uell
Xcu
For U € Wwe call dim U := inf{|X| —1: X C U and X = U} the dimension of U. A subspace of dimension two is a
plane. For a set {a, b, c, ...} we write a, b, c, ... instead of {a, b, c, .. .}.

We introduce the concept of a space (P, £, =) with congruence (cf. [8]). We assume that (P, L) is a linear space
which satisfies the following exchange condition.

(EC) Let S C Pandletx,y € P withx € SU{y}\S. Then y € S U {x}

Let = be a congruence relation on P x P, 1i.e., = is an equivalence relation with (a, b) = (b, a), (a,a) = (b, b)
and (a, a) = (b, ¢) implies b = c.

We use the notation (x1, x2, x3) = (y1, ¥2, y3) if and only if (x;, x;) = (y;, y;) fori, j € {1,2,3}. (P, &,=)isa
space with congruence if the axioms (W1), (W2) and (W3) are satisfied.

(W1) Leta, b, c € P be distinct and collinear, and let a’, b’ € P with (a, b) = (a’, b’). Then there exists exactly one
¢ ea,b with (a,b,c) = (@', b, ).

(W2) Leta, b, x € P benon-collinearandleta’, b, x’ € P with (a, b, x) = (a’, b’, x'). Forany c € a, band ¢’ € a’, b’
with (a, b, c) = (a’, b, ¢’) it holds (x, ¢) = (x/, ¢').

(W3) Fora, b, x € P non-collinear there exists exactly one x” € a, b, x\{x} with (a, b, x) = (a, b, x).

We call a bijective mapping ¢ : P — P amotion, if (x, y) = (¢(x), ¢(y)) forall x, y € P.

Lemma 2.1. (i) Ifa, b, c are collinear points and a’, b’, ¢’ € P with (a,b,c) = (a',b’, c'),thenad’, b, ¢’ are collinear.
(i1) Any motion ¢ is a collineation.

Proof. (i) By (W1) the point ¢’ € a’, b’ exists with (a’, b, ¢”") = (a, b, ¢). If ¢/ ¢ a’, I/, then by (W2) it would follow

(c,c"y=(c,c),hencec’ =c" € a’,b.
(ii) By (i), ¢ and ¢! map collinear points onto collinear points. [

For a subspace U and points a,b € U we define My (a,b) := {x € U : (a,x) = (b,x)}. We call My(a,b) a
midpoint, a midline, or a midplane of a, b, respectively, if it is a point, a line, or a plane, respectively.

Lemma 2.2. (i) Two distinct points a, b have at most one point m € a, b with (a, m) = (b, m).
(i1) My (a, b) is a subspace of U.
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