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Abstract

In this paper we consider an exchange space with congruence (P,L, ≡) not assuming any further geometrical properties. If the
dimension of the space is greater than 2, we show that for any line G of a plane E and any point x ∈ G there is a unique perpendicular
line through x in E and that any line reflection is a motion.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

It is well known that every Euclidean plane (E,L, �, ≡) [2,9] is isomorphic to an affine plane AG(2, K) over an
ordered and pythagorean commutative field K (cf. [2] (24.5)). Here (E,L) denotes an affine plane, (E,L, �) an ordered
plane, and ≡ denotes the congruence relation on E × E. We may consider E as a quadratic separable field extension
of K with the corresponding involutory field automorphism ¯ : E → E and we have (a, b) ≡ (c, d) if and only if
(a − b)(a − b) = (c − d)(c − d) for any points a, b, c, d ∈ E.

There is a corresponding theorem for hyperbolic planes (cf. [2]). For both proofs one first considers the group of
motions, in particular the line reflections. For the definition of a motion and a line reflection the order relation is
not necessary. We need only the linear structure of (E,L) and the congruence relation ≡, but for the proof that the
line reflection is a motion it seems that additional assumptions on the geometry are necessary. For example Sörensen
assumes in [8] that for given lines G1, G2, there exist distinct lines H1, H2 through a common point z which intersect
G1, G2. Here we give a proof for exchange planes with congruence not using this property.

In a plane with congruence (E,L, ≡) two perpendicular lines may have an empty intersection. We show that if in
a plane any two perpendicular lines have an empty intersection, then the relation “perpendicular” together with the
“identity relation” is transitive (cf. Theorem 2.13).

If there are two perpendicular lines with a non-empty intersection, one can show that for any line G and any point
x ∈ G we have a perpendicular line through x. But it is open if there is a unique perpendicular line to G through x.
This is true for finite or affine planes, but not known in general. In this paper we consider a space with congruence
(P,L, ≡) not assuming any further geometrical properties. (For special spaces with congruence cf. [5,6].) We only
assume that the space satisfies the exchange property, which for example can be easily shown for ordered spaces. In
Section 3 we assume that there are two points with a midpoint. We use the property that if two points have a midpoint,
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then they have a midline in every plane. If the dimension of the space is greater than 2, we show that for any line G
of a plane E and any point x ∈ G there is a unique perpendicular line through x in E and that any line reflection is a
motion. It follows that for any two points b, z there exists a unique point b′ ∈ z, b\{b} with (z, b) ≡ (z, b′) and also
point reflections are motions. For the case that there exist no points with a midpoint, we conjecture that all examples
in which the line reflections are motions have dimension 2.

2. Spaces with congruence

Let (P,L) denote a linear space or incidence space with the point set P, the line set L and at least three points on
every line, i.e.,

• for any two points there is exactly one line containing them and
• for any line L ∈ L we have |L|�3.

A subspace is a subset U ⊂ P such that for all distinct points x, y ∈ U the unique line passing through x and y, denoted
by x, y, is contained in U. Let U denote the set of all subspaces. For every subset X ⊂ P we define the following
closure operation

: P(P ) → U; X �→ X by X :=
⋂
U∈U
X⊂U

U . (1)

For U ∈ U we call dim U := inf{|X| − 1 : X ⊂ U and X = U} the dimension of U. A subspace of dimension two is a
plane. For a set {a, b, c, . . .} we write a, b, c, . . . instead of {a, b, c, . . .}.

We introduce the concept of a space (P,L, ≡) with congruence (cf. [8]). We assume that (P,L) is a linear space
which satisfies the following exchange condition.

(EC) Let S ⊂ P and let x, y ∈ P with x ∈ S ∪ {y}\S. Then y ∈ S ∪ {x}
Let ≡ be a congruence relation on P × P , i.e., ≡ is an equivalence relation with (a, b) ≡ (b, a), (a, a) ≡ (b, b)

and (a, a) ≡ (b, c) implies b = c.
We use the notation (x1, x2, x3) ≡ (y1, y2, y3) if and only if (xi, xj ) ≡ (yi, yj ) for i, j ∈ {1, 2, 3}. (P,L, ≡) is a

space with congruence if the axioms (W1), (W2) and (W3) are satisfied.

(W1) Let a, b, c ∈ P be distinct and collinear, and let a′, b′ ∈ P with (a, b) ≡ (a′, b′). Then there exists exactly one
c′ ∈ a′, b′ with (a, b, c) ≡ (a′, b′, c′).

(W2) Let a, b, x ∈ P be non-collinear and let a′, b′, x′ ∈ P with (a, b, x) ≡ (a′, b′, x′). For any c ∈ a, b and c′ ∈ a′, b′
with (a, b, c) ≡ (a′, b′, c′) it holds (x, c) ≡ (x′, c′).

(W3) For a, b, x ∈ P non-collinear there exists exactly one x′ ∈ a, b, x\{x} with (a, b, x) ≡ (a, b, x′).

We call a bijective mapping � : P → P a motion, if (x, y) ≡ (�(x), �(y)) for all x, y ∈ P .

Lemma 2.1. (i) If a, b, c are collinear points and a′, b′, c′ ∈ P with (a, b, c) ≡ (a′, b′, c′), then a′, b′, c′ are collinear.
(ii) Any motion � is a collineation.

Proof. (i) By (W1) the point c′′ ∈ a′, b′ exists with (a′, b′, c′′) ≡ (a, b, c). If c′ /∈ a′, b′, then by (W2) it would follow
(c′, c′′) ≡ (c, c), hence c′ = c′′ ∈ a′, b′.

(ii) By (i), � and �−1 map collinear points onto collinear points. �

For a subspace U and points a, b ∈ U we define MU(a, b) := {x ∈ U : (a, x) ≡ (b, x)}. We call MU(a, b) a
midpoint, a midline, or a midplane of a, b, respectively, if it is a point, a line, or a plane, respectively.

Lemma 2.2. (i) Two distinct points a, b have at most one point m ∈ a, b with (a, m) ≡ (b, m).
(ii) MU(a, b) is a subspace of U.
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