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Abstract

Let G be a connected, locally connected, claw-free graph of order n and x, y be two vertices of G. In this paper, we prove that
if for any 2-cut S of G, S ∩ {x, y} = ∅, then each (x, y)-path of length less than n − 1 in G is extendable, that is, for any path P

joining x and y of length h(< n − 1), there exists a path P ′ in G joining x and y such that V (P ) ⊂ V (P ′) and |P ′| = h + 1. This
generalizes several related results known before.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction and main results

We consider only finite, simple and connected graphs. For terminology and notation not defined here we refer to [2].
Throughout this paper, let G be a graph of order n, V (G) and E(G) denote, respectively, the vertex set and the edge set
of G. For each vertex u of G, the neighborhood N(u) of u is the set of all vertices adjacent to u. Set N [u]=N(u)∪{u}.
For S ⊆ V (G), denote by G[S] the subgraph of G induced by S. For convenience, let Hu = G[N(u)]. A vertex u of G

is said to be locally connected if Hu is connected. G is called locally connected if each vertex of G is locally connected.
Generally, G is called locally k-connected if for each vertex u, Hu is k-connected. A connected, locally k-connected
graph must be (k + 1)-connected. The distance between two vertices x, y is denoted by d(x, y). A k-cut is a cut set
containing k vertices.

A path with end vertices x and y is called an (x, y)-path. An (x, y)-path P is extendable if there is an (x, y)-path P ′
in G such that V (P ′) ⊃ V (P ) and |V (P ′)| = |V (P )| + 1. In this case we say also that P can be extended to P ′. An
(x, y)-path is a hamiltonian path of G if it contains all the vertices of G. A graph G is said to be path extendable if for
each pair of vertices x, y and for each nonhamiltonian (x, y)-path P in G, P is extendable.

A graph G is said to be hamiltonian if it has a cycle containing all the vertices of G. G is panconnected if each pair
of distinct vertices x, y are joined by a path of length h for each h, d(x, y)�h�n − 1. A graph G is called claw-free
if it has no induced subgraph isomorphic to K1,3.
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Many results on hamiltonian properties of claw-free graphs have appeared during the last two decades. We refer
the reader to a recent survey [5]. In this paper, we are interested in some results involving the local connectivity of a
claw-free graph. In 1979, Oberly and Sumner [7] proved that every connected, locally connected, claw-free graph G of
order n�3 is hamiltonian. Clark [4] improved this result by showing that in a graph G satisfying the same condition,
each vertex of G lies on a cycle of length from 3 to n inclusive. Under the condition that G is locally 2-connected,
Kanetkar and Rao [6] and Wang and Zhu [9] got stronger properties of G, respectively.

Theorem 1 (Kanetkar and Rao [6]). Every connected, locally 2-connected, claw-free graph is panconnected.

Theorem 2 (Wang and Zhu [9]). Every connected, locally 2-connected, claw-free graph is path extendable.

The question is whether the locally 2-connectedness can be replaced by locally connectedness without changing
those properties of G. In [8], Sheng et al. proved the following result:

Theorem 3 (Sheng et al. [8]). Let G be a connected, locally connected, claw-free graph of order n and x, y be any
two vertices of G. If for any 2-cut S, S ∩ {x, y} = ∅, then x and y are joined by a path of length h for each h,
d(x, y)�h�n − 1.

Theorem 3 generalized Theorem 1 and solved the following conjecture proposed by Broersma and Veldman:

Conjecture 4 (Broersma and Veldman [3]). Let G be a connected, locally connected, claw-free graph of order at least
4. Then G is panconnected if and only if G is 3-connected.

In this paper, we show the following, which generalizes all results mentioned above:

Theorem 5. Let G be a connected, locally connected, claw-free graph of order n and x, y be any two vertices of G.
If for any 2-cut S, S ∩ {x, y} = ∅, then each (x, y)-path of length less than n − 1 of G is extendable.

It is easy to see that if for given two vertices x and y of a graph G, G contains (x, y)-paths of all possible lengths,
then {x, y} must not be a 2-cut. We will construct a connected, locally connected, claw-free graph G0 to show that the
condition “for any 2-cut S, S ∩ {x, y} = ∅” cannot be replaced either by “{x, y} is not a 2-cut” or by “S ∩ {x} = ∅”.
G0 is a graph consisting of three distinct complete graphs G1, G2 and G3 with |Gi |�3 for 1� i�3, |Gi ∩ Gj | = 1
for 1� i < j �3 and G1 ∩ G2 ∩ G3 = ∅. Obviously, G0 is a connected, locally connected, claw-free graph. Taking
x ∈ G3\(G1 ∪ G2) and y ∈ G1 ∩ G2, there is no hamiltonian (x, y)-path in G0.

2. Several lemmas

Let P = x1x2 · · · xp be an (x1, xp)-path of G with an orientation from x1 to xp. We let xiP xj , for 1� i�j �p, be
the subpath xixi+1 · · · xj , and xjPxi = xjxj−1 · · · xi . We will consider xiP xj and xjPxi both as paths and as vertex

sets. We put x
−(P )
i = xi−1, x

+(P )
i = xi+1, x−2(P )

i = xi−2 and x
+2(P )
i = xi+2. If there is no doubt about the path we only

write x−
i , x+

i , etc. We say that an (x, y)-path P is minimal if there is no (x, y)-path P ′ in G such that V (P ′) ⊂ V (P ).
Let z be an internal vertex of an (x, y)-path P . If there exists a minimal (u1, us)-path Q = u1u2 · · · us in Hz such

that u2 = x, us = z+ (u2 = y, us = z−, resp.) and u1 is the only vertex of Q not contained in P , then we call z an
x-detour (a y-detour, resp.) vertex of P , and Q a (z, x)-detour (a (z, y)-detour, resp.) of P . In this case, we say also
that P has a (z, x)-detour (a (z, y)-detour, resp.). By the definition, if Q is a (z, x)-detour or a (z, y)-detour of P then
the order of Q is at least 3.

We emphasis that for any z ∈ V (G), the order of any minimal path in Hz is at most 4, if G is a claw-free graph. We
will use the following lemmas which were proved in [8].

Lemma 1 (Sheng et al. [8]). Let G be a claw-free graph, P be an (x, y)-path of G and z be an internal vertex of P with
N(z)�V (P ). If P is not extendable and z is a locally connected vertex, then P has a (z, x)-detour or a (z, y)-detour.
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