



DISCRETE MATHEMATICS

Discrete Mathematics 306 (2006) 1805-1811

www.elsevier.com/locate/disc

#### Note

## Blocking sets in line Grassmannians

#### Corrado Zanella

Dipartimento di Tecnica e Gestione dei Sistemi Industriali, Università di Padova, Stradella S. Nicola, 3, I-36100 Vicenza, Italy

Received 9 December 2005; received in revised form 1 March 2006; accepted 28 March 2006 Available online 12 June 2006

#### **Abstract**

In this paper the most natural questions concerning the blocking sets in the line Grassmannian of PG(n, q) are partially answered. In particular, the following Bose–Burton type theorems are proved: if n is odd or n = 4, then the blocking sets of minimum size are precisely the linear complexes with singular subspace of minimum dimension. © 2006 Elsevier B.V. All rights reserved.

Keywords: Blocking set; Grassmann variety; Linear complex

#### 1. Introduction

In 1980, Tallini [10] developed the theory of k-sets in the line Grassmannian of a Galois space PG(n, q), as a natural extension of the analogous one in PG(n, q). Since 1999, Metsch [5,6] proved several results characterizing some hyperplane sections of polar spaces as being the smallest blocking sets. He called such results "Bose–Burton type theorems" in analogy with the well-known characterization of the linear subspaces of PG(n, q) [1]. The aim of this paper is to develop a theory of blocking sets in the line Grassmannian of PG(n, q) taking inspiration from the mentioned results.

In this note we deal with the projective space PG(n,q) coordinatized by  $\mathbb{F}_q$ , where n>2, and q is a prime power. Let  $\mathscr{P}$  and  $\mathscr{R}$  denote the point and line set of PG(n,q), respectively. If  $A\in\mathscr{P}$  and  $\pi$  is a plane of PG(n,q) containing A, the *pencil* of lines with *center* A and *support*  $\pi$  is the set  $\varphi(A,\pi)$  of all lines through A, lying on  $\pi$ . Let  $\mathscr{F}$  denote the set of all pencils. The geometry  $\Gamma(n,1,q)=(\mathscr{R},\mathscr{F})$  is a semilinear space, known as the *line Grassmannian* of PG(n,q). Occasionally, we will call the elements of  $\mathscr{R}$  *G-points*, and the elements of  $\mathscr{F}$  *G-lines*. Analogously, planes and projective subspaces contained in  $(\mathscr{R},\mathscr{F})$  will be called *G-planes* and *G-subspaces*, respectively.

More generally, a *pencil of h-subspaces* in PG(n, F), F a field, is the set of all h-subspaces containing a given (h-1)-subspace, say L, and contained in a given (h+1)-subspace M, with  $L \subseteq M$ . The hth  $Grassmannian \Gamma(n, h, F)$  of PG(n, F),  $0 \le h \le n-1$ , is the semilinear space whose points are the h-subspaces in PG(n, F) and whose lines are the pencils of h-subspaces.

Let  $A, B \in \mathcal{P}$  be two distinct points and  $\ell = AB$  the line joining them. Let us represent such points by coordinates, say  $A = \mathbb{F}_q(x_0, x_1, \dots, x_n)$  and  $B = \mathbb{F}_q(y_0, y_1, \dots, y_n)$ . The elements

$$p_{ij} = x_i y_j - x_j y_i, \quad 0 \leqslant i < j \leqslant n,$$

E-mail address: corrado.zanella@unipd.it.

define a point  $\mathbb{F}_q(p_{ij})$  of PG(N, q), where

$$N = \binom{n+1}{2} - 1. \tag{1}$$

This point is independent on the choice of  $A, B \in \ell, A \neq B$ , and their coordinates, so it can be uniquely associated with  $\ell$ . The map  $\wp: \ell \mapsto \mathbb{F}_q(p_{ij})$  is the well-known *Plücker embedding*, and the elements  $p_{ij}$  are the so-called *Plücker coordinates* of  $\ell$ . The set  $\mathscr{G}_{n,1,q} = \mathscr{R}^\wp$  is the *Grassmann variety* representing the lines of PG(n,q). For n=3, this variety is also known as the *Klein quadric*. The Plücker embedding is one-to-one, furthermore the image of an element of  $\mathscr{F}$  is a line of PG(N,q) contained in  $\mathscr{G}_{n,1,q}$ , and conversely. By these properties of  $\wp$ , the semilinear space whose point set is  $\mathscr{G}_{n,1,q}$  and whose lines are the lines of PG(N,q) contained in  $\mathscr{G}_{n,1,q}$  is isomorphic to  $\Gamma(n,1,q)$ .

Let  $A \in \mathcal{P}$ , and let  $S_A$  be the *star of lines* with center A, i.e.

$$S_A = \{\ell \in \mathcal{R} | A \in \ell\}.$$

This  $S_A$  is an (n-1)-dimensional G-subspace, and  $S_A^\wp$  is a subspace of  $\operatorname{PG}(N,q)$  entirely contained in  $\mathscr{G}_{n,1,q}$ . We define  $\mathscr{S}=\{S_A|A\in\mathscr{P}\}$ . Next, let  $\pi$  be a plane of  $\operatorname{PG}(n,q)$ , and  $T_\pi=\{\ell\in\mathscr{R}|\ell\subset\pi\}$ . Such  $T_\pi$ , which will be called a ruled plane, is a G-plane, and  $T_\pi^\wp$  is a plane of  $\operatorname{PG}(N,q)$  contained in  $\mathscr{G}_{n,1,q}$ . Let  $\mathscr{T}$  be the set of all ruled planes. It is quite clear that  $\mathscr{S}\cup\mathscr{T}$  is the set of all maximal G-subspaces of  $\Gamma(n,1,q)$ . So, every subspace of  $\operatorname{PG}(N,q)$  contained in  $\mathscr{G}_{n,1,q}$ , maximal with respect to inclusion, is the image under  $\wp$  of an element of  $\mathscr{S}\cup\mathscr{T}$ , and conversely.

A *linear complex* in PG(n, q) is the set of all lines whose Plücker coordinates satisfy a non-vanishing homogeneous linear equation

$$\sum_{\substack{i,j=0\\i< j}}^{n} \alpha_{ij} p_{ij} = 0. \tag{2}$$

Let **B** be a linear complex. If a point *P* exists such that all lines through *P* belong to **B**, then the linear complex is called *degenerate*; otherwise, **B** is *general*.

A *null polarity* of PG(n,q) is a mapping  $\omega$ , which maps a point A, represented by a column vector  $\mathbf{a}$ , onto a hyperplane  $A^{\omega}$  of coordinates  $\mathbf{u} = M\mathbf{a}$ , where  $M \neq O$  is a given skew-symmetric  $(n+1) \times (n+1)$  matrix. The mapping is defined only on the *non-singular points*, that is when  $M\mathbf{a} \neq O$ . If M is singular, then  $\omega$  is said to be *degenerate*. There is a non-degenerate null polarity in PG(n,q) if and only if n is odd. The following result is well known (cf. e.g. [8, Section 156]):

**Result 1.** Let **B** be the linear complex of Eq. (2), and denote by  $\omega$  the null polarity of PG(n, q) with matrix  $M = (\alpha_{ij})$ , where  $\alpha_{ij} = 0$  for i = j and  $\alpha_{ij} = -\alpha_{ji}$  for i > j. Let A and B be two distinct points. Then the line AB belongs to **B** if and only if either A is a singular point for  $\omega$ , or  $B \in A^{\omega}$ . This defines a bijection between the set of all linear complexes and the set of all null polarities, and degenerate linear complexes are related to degenerate null polarities.

A blocking set in a semilinear space  $(\mathcal{R}, \mathcal{F})$  is a set  $\mathbf{B} \subseteq \mathcal{R}$ , such that every  $\varphi \in \mathcal{F}$  meets  $\mathbf{B}$ . Our goal is to study the blocking sets of  $\Gamma(n, 1, q)$ . In the following sections some problems concerning blocking sets in  $\Gamma(n, 1, q)$  are partially answered. This can be seen as the first step in investigating the blocking sets with respect to the k-subspaces in  $\Gamma(n, h, q)$ , where 0 < h < n - 1,  $k \le \max\{n - h, h + 1\}$ , which are currently object of investigation.

We shall use the notation

$$\theta_i = \frac{q^{i+1} - 1}{q - 1}, \quad i \in \mathbb{N} \cup \{-1\}.$$

#### 2. Examples of blocking sets in $\Gamma(n, 1, q)$

If **B**' is a blocking set with respect to lines in PG(N, q), then **B** = (**B**'  $\cap \mathcal{G}_{n,1,q}$ ) $^{\wp^{-1}}$  is a blocking set in  $\Gamma(n,1,q)$ . In case **B**' is a hyperplane of PG(N, q), then **B** is a linear complex. Such a complex is degenerate if and only if **B** contains some  $S \in \mathcal{S}$ .

### Download English Version:

# https://daneshyari.com/en/article/4651027

Download Persian Version:

https://daneshyari.com/article/4651027

<u>Daneshyari.com</u>