

Available online at www.sciencedirect.com

Discrete Mathematics 307 (2007) 878-884

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

A generalization of Dirac's theorem on cycles through *k* vertices in *k*-connected graphs

Evelyne Flandrin^a, Hao Li^a, Antoni Marczyk^b, Mariusz Woźniak^b

^aL R I, UMR 8623, Bât. 490, Université de Paris-Sud, 91405 Orsay, France ^bFaculty of Applied Mathematics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland

Received 31 October 2003; received in revised form 18 February 2005; accepted 22 November 2005 Available online 26 September 2006

Abstract

Let X be a subset of the vertex set of a graph G. We denote by $\kappa(X)$ the smallest number of vertices separating two vertices of X if X does not induce a complete subgraph of G, otherwise we put $\kappa(X) = |X| - 1$ if $|X| \ge 2$ and $\kappa(X) = 1$ if |X| = 1. We prove that if $\kappa(X) \ge 2$ then every set of at most $\kappa(X)$ vertices of X is contained in a cycle of G. Thus, we generalize a similar result of Dirac. Applying this theorem we improve our previous result involving an Ore-type condition and give another proof of a slightly improved version of a theorem of Broersma et al.

© 2006 Elsevier B.V. All rights reserved.

MSC: 05C38; 05C45

Keywords: Graphs; Cycles; Hamiltonian graphs; Cyclability

1. Introduction

Throughout this article we will consider only undirected, finite and simple graphs. Let *G* be a connected graph and let *S* be a proper subset of V(G). *S* is called a *vertex cut* of *G* if the graph G - S (i.e., the graph obtained by removing all vertices of *S* from *G*) is not connected. Let *S* be a vertex cut of *G* and *Y*, *Z* two connected components of G - S. If $x \in V(Y)$ and $y \in V(Z)$, we say that the vertex cut *S* separates *x* and *y*. Observe that only two nonadjacent vertices can be separated and the vertex cut *S* that separates *x* and *y* contains neither *x* nor *y*.

Let *X* be a subset of the vertex set of a graph *G* such that $|X| \ge 2$ and *X* does not induce a complete subgraph of *G*. The *connectivity of X* in *G*, denoted by $\kappa(X)$, is the smallest number *k* such that there exists in *G* a vertex cut of *k* vertices that separates two vertices of *X*. If *X* is a clique in *G*, then, by definition, $\kappa(X) = |X| - 1$ for $|X| \ge 2$ and $\kappa(X) = 1$ if X = 1. The number $\kappa(V(G)) = \kappa(G)$ is called the *connectivity* of the graph *G*. Thus, for the complete graph K_n we have $\kappa(K_n) = n - 1$, $n \ge 2$, and $\kappa(K_1) = 1$. Note that some authors (see for example [4]) define $\kappa(X) = \infty$ if *X* is a clique. By $\alpha(X)$ we denote the maximum number of pairwise nonadjacent vertices in the subgraph of *G* induced by *X*. We say that *X* is *cyclable* in *G* if *G* has a cycle containing all vertices of *X*.

The investigation on cycles passing through a given set of vertices in k-connected graphs was initiated by Dirac [7].

E-mail address: marczyk@uci.agh.edu.pl.

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter @ 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2005.11.052

Theorem 1. Let G be a k-connected graph, where $k \ge 2$, and let X be a set of k vertices of G. Then there is a cycle in G containing every vertex of X.

There are many improvements of the last theorem. For example, Egawa et al. [8] proved the common generalizations of Theorem 1 and the classical Dirac's theorem [6] on the existence of hamiltonian cycles in graphs.

Theorem 2. Let G be a k-connected graph, where $k \ge 2$, and let X be a set of k vertices of G. Then G contains either a cycle of length at least $2\delta(G)$ including every vertex of X or a hamiltonian cycle.

Recently Häggkvist and Mader [12] showed that every set of $k + \lfloor \frac{1}{3}\sqrt{k} \rfloor$ vertices in a k-connected k-regular graph belongs to some cycle.

Bollobás and Brightwell [1] and Shi [18] obtained an extension of Dirac's theorem on hamiltonian graphs.

Theorem 3. Let G be a 2-connected graph of order n and let X be a set of vertices of G. If $d_G(x) \ge n/2$ for each $x \in X$, then X is cyclable.

Shi [18] improved both Ore's theorem [16] and the previous one in the following way.

Theorem 4. Let G be a graph of order n and let X be a subset of its vertex set such that $\kappa(X) \ge 2$. If $d_G(x) + d_G(y) \ge n$ for each pair x, y of nonadjacent vertices of X, then X is cyclable in G.

This theorem was proved under the assumption that the graph is 2-connected. However, the presented version follows easily from a theorem due to Ota [17] that we give in Section 7.

The main result of this paper is the following generalization of Theorem 1 involving the notion of the connectivity of a set of vertices.

Theorem 5. Let G be a graph and Y a subset of V(G) with $\kappa(Y) \ge 2$. Let X be a subset of Y with $|X| \le \kappa(Y)$. Then X is cyclable in G.

Broersma et al. [4] studied cyclability of sets of vertices of graphs satisfying a local Chvátal–Erdős-type condition that involves the defined above parameters. They obtained a generalization of a result of Fournier [10] and of Chvátal–Erdős theorem under the assumption that the graph is 2-connected. The first application of Theorem 5 is an alternative proof of their theorem (there is a gap in the original proof).

Theorem 6. Let G be a graph and let $X \subset V(G)$ with $\kappa(X) \ge 2$. If $\alpha(X) \le \kappa(X)$, then X is cyclable in G.

The second one is the following extension of a result of Flandrin et al. [9].

Theorem 7. Let G = (V, E) be a graph of order n. Let $X_1, X_2, ..., X_q$ be subsets of the vertex set V such that the union $X = X_1 \cup X_2 \cup \cdots \cup X_q$ satisfies $2 \leq q \leq \kappa(X)$. If for each i, i = 1, 2, ..., q, and for any pair of nonadjacent vertices $x, y \in X_i$, we have

 $d(x) + d(y) \ge n,$

then X is cyclable in G.

The condition of the last theorem is weaker than that of Shi and is called the *regional Ore's condition*. As an immediate consequence of Theorem 7 we get the following generalization of Theorem 5.

Theorem 8. Let G = (V, E) be a graph, $k \ge 2$. For every set of k cliques X_1, X_2, \ldots, X_k of G, such that $\kappa(X_1 \cup X_2 \cup \cdots \cup X_k) \ge k \ge 2$ there exists a cycle of G containing all vertices of these cliques. \Box

Therefore, for any set of k cliques in a k-connected graph G there is a cycle of G containing all vertices of these cliques.

Let us recall the notion of k-closure of a graph which was introduced in the classical paper due to Bondy and Chvátal [2]. Namely, given an integer k, we will call the k-closure of G the graph obtained by recursively joining pairs x, y of

Download English Version:

https://daneshyari.com/en/article/4651148

Download Persian Version:

https://daneshyari.com/article/4651148

Daneshyari.com