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Abstract

We determine a lower bound for the number of edges of a 2-connected maximal nontraceable graph, and present a construction
of an infinite family of maximal nontraceable graphs that realize this bound.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

We consider only simple, finite graphs G and denote the vertex set and edge set of G by V (G) and E(G), respectively.
The open neighbourhood of a vertex v in G is the set NG(v) = {x ∈ V (G) : vx ∈ E(G)}. If U is a nonempty subset
of V (G), then 〈U〉 denotes the subgraph of G induced by U.

A graph G is hamiltonian if it has a hamiltonian cycle (a cycle containing all the vertices of G), and traceable if it has
a hamiltonian path (a path containing all the vertices of G). A graph G is maximal nonhamiltonian (MNH) if G is not
hamiltonian, but G+e is hamiltonian for each e ∈ E(G), where G denotes the complement of G. A graph G is maximal
nontraceable (MNT) if G is not traceable, but G + e is traceable for each e ∈ E(G). A graph G is hypohamiltonian if
G is not hamiltonian, but every vertex-deleted subgraph G − v of G is hamiltonian. We say that a graph G is maximal
hypohamiltonian (MHH) if it is MNH and hypohamiltonian.

In 1978, Bollobás [1] posed the problem of finding the least number of edges, f (n), in a MNH graph of order n.
Bondy [2] had already shown that a MNH graph with order n�7 that contained m vertices of degree 2 had at least
(3n + m)/2 edges, and hence f (n)��3n/2� for n�7. Combined results of Clark et al. [5,6] and Lin et al. [9] show
that f (n) = �3n/2� for n�19 and for n = 6, 10, 11, 12, 13, 17. The values of f (n) for the remaining values of n are
also given in [9].

Let g(n) be the minimum size of a MNT graph of order n. Dudek et al. [7] showed that g(n)�(3n − 20)/2 for all
n and, by means of a recursive construction, they found MNT graphs of order n and size O(n log n). To date, no cubic
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MNT graphs have been reported. We construct an infinite family of cubic MNT graphs, thus showing that g(n)�3n/2
for infinitely many n.

Now let g2(n) be the minimum size of a 2-connected MNT graph of order n. We prove that g2(n)��3n/2� for n�7.
It then follows from our constructions that g2(n) = �3n/2� for n = 8p for p�5, n = 8p + 2 for p�6, n = 8p + 4 for
p = 3 and p ≥ 6, and n = 8p + 6 for p�4.

2. A lower bound for the size of a 2-connected MNT graph

Bondy [2] proved that if G is a 2-connected MNH graph and v ∈ V (G) with degree d(v) = 2, then each neighbour
of v has degree at least 4. He also showed that the neighbours of such a vertex are in fact adjacent.

In order to prove a corresponding result for 2-connected MNT graphs we need the following result.

Lemma 2.1. Let Q be a path in a MNT graph G. If 〈V (Q)〉 is not complete, then some internal vertex of Q has a
neighbour in G − V (Q).

Proof. Let u and v be two nonadjacent vertices of 〈V (Q)〉. Then G + uv has a hamiltonian path P. Let x and y be the
two endvertices of Q and suppose no internal vertex of Q has a neighbour in G − V (Q). Then P has a subpath R in
〈V (Q)〉 + uv and R has either one or both endvertices in {x, y}. If R has only one endvertex in {x, y}, then P has an
endvertex in Q. In either case the path obtained from P by replacing R with Q is a hamiltonian path of G. �

Lemma 2.2. If G is a MNT graph and v ∈ V (G) with d(v) = 2, then the neighbours of v are adjacent. If in addition
G is 2-connected, then each neighbour of v has degree at least 4.

Proof. Let NG(v) = {x1, x2} and let Q be the path x1vx2. Since NG(v) ⊆ Q, it follows from Lemma 2.1 that 〈V (Q)〉
is a complete graph; hence x1 and x2 are adjacent.

Now assume that G is 2-connected. Since G is not traceable we assume d(x1) > 2. Then also d(x2) > 2 otherwise
x1 would be a cut vertex of G.

Let z be a neighbour of x1 and let Q be the path zx1vx2. Since d(v)=2 the graph 〈V (Q)〉 is not complete, and hence
it follows from Lemma 2.1 that x1 has a neighbour in G − V (Q). Thus d(x1)�4. Similarly d(x2)�4. �

We also have the following two lemmas concerning MNT graphs that have vertices of degree 2.

Lemma 2.3. Suppose G is a 2-connected MNT graph. Suppose v1, v2 ∈ V (G) such that d(v1) = d(v2) = 2 and v1
and v2 have exactly one common neighbour x. Then d(x)�5.

Proof. The vertices v1 and v2 cannot be adjacent otherwise x would be a cut vertex. Let N(vi) = {x, yi}; i = 1, 2. It
follows from Lemma 2.2 that x is adjacent to yi ; i = 1, 2. Let Q be the path y1v1xv2y2. Since 〈V (Q)〉 is not complete,
it follows from Lemma 2.1 that x has a neighbour in G − V (Q). Hence d(x)�5. �

Lemma 2.4. Suppose G is a MNT graph. Suppose v1, v2 ∈ V (G) such that d(v1) = d(v2) = 2 and v1 and v2 have the
same two neighbours x1 and x2. Then NG(x1) − {x2} = NG(x2) − {x1}. Also d(x1) = d(x2)�5.

Proof. From Lemma 2.2 it follows that x1 and x2 are adjacent. Let Q be the path x2v1x1v2. 〈V (Q)〉 is not complete
since v1 and v2 are not adjacent. Thus it follows from Lemma 2.1 that x1 has a neighbour in G − V (Q). Now
suppose p ∈ NG−V (Q)(x1) and p /∈ NG(x2). Then a hamiltonian path P in G + px2 contains a subpath of either of
the forms given in the first column of Table 1. Note that i, j ∈ {1, 2}; i 	= j and that L represents a subpath of P in
G − {x1, x2, v1, v2, p}. If each of the subpaths is replaced by the corresponding subpath in the second column of the
table we obtain a hamiltonian path P ′ in G, which leads to a contradiction.

Hence p ∈ NG(x2). Thus NG(x1) − {x2} ⊆ NG(x2) − {x1}. Similarly NG(x2) − {x1} ⊆ NG(x1) − {x2}. Thus
NG(x1) − {x2} = NG(x2) − {x1} and hence d(x1) = d(x2). Now let Q be the path px1v1x2v2. Since 〈V (Q)〉 is not
complete, it follows from Lemma 2.1 that x1 or x2 has a neighbour in G − V (Q). Hence d(x1) = d(x2)�5. �

We now consider the size of a 2-connected MNT graph.
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