

Available online at www.sciencedirect.com

Discrete Mathematics 307 (2007) 892-895

www.elsevier.com/locate/disc

On a cycle through a specified linear forest of a graph

Tobias Gerlach, Jochen Harant

Department of Mathematics, Technical University of Ilmenau, D 98684 Ilmenau, Germany

Received 21 October 2003; received in revised form 13 January 2005; accepted 22 November 2005 Available online 27 September 2006

Abstract

Results on the existence of a cycle containing a given linear forest are proved. © 2006 Elsevier B.V. All rights reserved.

MSC: 05C35; 05C38; 05C45

Keywords: Connectivity; Toughness; Cycle; Specified linear forest

1. Introduction and results

We use [3] for terminology and notation not defined here and consider finite simple graphs only. Let G be a graph, $X \subseteq V(G)$, and G[X] be the subgraph of G induced by X. For $S \subset V(G)$ let $\omega_X(G-S)$ be the number of components of the graph G-S, which contain a vertex of X. Let $\kappa(X)$ be infinity if G[X] is complete or the minimum cardinality of a set $S \subset V(G)$ with $\omega_X(G-S) \geqslant 2$. A *linear forest* is an acyclic graph of maximum degree at most 2. Given a linear forest E (as a subgraph of E0) with its vertex set E1, a cycle of E2 containing E3 and all edges of E3 is an E3. Theorems 1 and 2 are consequences of results in [2,4] and in [6,11], respectively.

Theorem 1 (*Broersma et al.* [2], *Dirac* [4]). Let G be a graph, $X \subseteq V(G)$, $|X| \le \kappa(X)$, and $\kappa(X) \ge 2$. Then G has an X-cycle.

Given t > 0, X is called t-tough in G if $\omega_X(G - S) = 1$ or $\omega_X(G - S) \le |S|/t$ for all $S \subset V(G)$. Let $\tau_X(G)$ be the maximum value of t for which X is t-tough in G. If G[X] is complete we define $\tau_X(G) = \infty$.

Theorem 2 (Harant [6], Watkins and Mesner [11]). Let G be a graph, $X \subseteq V(G)$, $|X| \le \kappa(X) + 1$, and $\kappa(X) \ge 3$. If $\tau_X(G) \ge 1$, then G has an X-cycle.

The following theorem was proved in [5].

Theorem 3 (Häggkvist and Thomassen [5]). If Y is a set of independent edges of a graph G with $|Y| \le \kappa(V(Y)) - 1$ then G has a Y-cycle.

E-mail address: harant@mathematik.tu-ilmenau.de (T. Gerlach).

0012-365X/ $\$ - see front matter @ 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2005.11.043

In [8] Kawarabayashi gave the outline of a proof of the Lovász–Woodall–Conjecture (see [9,12]) concerning the existence of a cycle through $\kappa(V(G))$ independent edges of a graph G and referred to forthcoming papers.

Theorem 4 (*Kawarabayashi* [8]). If Y is a set of independent edges of a graph G with $|Y| \le \kappa(V(G))$ and $\kappa(V(G)) \ge 2$ then G has a Y-cycle unless $\kappa(V(G))$ is odd and G - Y is disconnected.

For a path P let e(P) be the number of edges of P and for a path set \mathscr{P} we define $e(\mathscr{P}) = \sum_{P \in \mathscr{P}} e(P)$.

Theorem 5 (*Harant* [6]). Let G be a graph, $X \subseteq V(G)$, \mathcal{P} be a set of disjoint paths of length at least one in G - X, $|X| + e(\mathcal{P}) \leq \kappa(X \cup V(\mathcal{P}))$, and $\kappa(X \cup V(\mathcal{P})) \geq 2$. If G has a \mathcal{P} -cycle then G has an $(X \cup \mathcal{P})$ -cycle.

Results on the length of an $(X \cup \mathcal{P})$ -cycle in case $|X| + e(\mathcal{P}) \leq \kappa(V(G)) - 2$ can be found in [7]. Theorem 6 is a consequence of Theorems 3 and 5. We give a short proof here. Theorem 7 is our main result.

Theorem 6. Let G be a graph, $\emptyset \neq X \subseteq V(G)$, \mathscr{P} be a set of disjoint paths of length at least one in G - X, and $\kappa(X \cup V(\mathscr{P})) \geqslant 2$. If $|X| + e(\mathscr{P}) \leqslant \kappa(X \cup V(\mathscr{P}))$ then G has an $(X \cup \mathscr{P})$ -cycle.

Theorem 7. Let G be a graph, $X \subseteq V(G)$ with $|X| \ge 4$, and \mathcal{P} be a nonempty set of disjoint paths of length at least one in G - X. If $|X| + e(\mathcal{P}) \le \kappa(X \cup V(\mathcal{P})) + 1$ and $\tau_X(G) > \kappa(X \cup V(\mathcal{P}))/|X|$ then G has an $(X \cup \mathcal{P})$ -cycle.

2. Proofs

For $A, B \subseteq V(G)$ an A - B-path is a path P between A and B such that $|V(P) \cap A| = |V(P) \cap B| = 1$. A common vertex of A and B is also an A - B-path. A set $S \subseteq V(G)$ separates A and B if any A - B-path contains a vertex in S. Let N(v) be the neighbourhood of $v \in V(G)$. Without mentioning in each case, we shall use the following properties.

- (π_1) A is t-tough if B is t-tough for $A \subseteq B \subseteq V(G)$.
- (π_2) $\kappa(A) \geqslant \kappa(B)$ if $A \subseteq B \subseteq V(G)$.
- (π_3) Let $A, B, B' \subseteq V(G)$ such that $B' \subseteq B$. If $S \subseteq V(G)$ separates A and B then S also separates A and B'.
- (π_4) Let $a \in A \subseteq V(G)$ and $\kappa(A) < \infty$. Then $|N(a)| \geqslant \kappa(A)$ or $A \subseteq \{a\} \cup N(a)$.
- (π_5) Let $A \subset V(G)$ and $b \in V(G) \setminus A$. If $|A| \geqslant \kappa(A \cup \{b\})$ then A and N(b) cannot be separated by a set of at most $\kappa(A \cup \{b\}) 1$ vertices.

Let i(P) be the number of inner vertices of a path P and $i(\mathcal{P}) = \sum_{P \in \mathcal{P}} i(P)$ for a path set \mathcal{P} . Obviously, $|\mathcal{P}| + i(\mathcal{P}) = e(\mathcal{P})$. In the sequel we shall write $i_G(.)$ and $\kappa_G(.)$ instead of i(.) and $\kappa(.)$, respectively, if it is important to distinguish in which graph G these values are calculated.

2.1. Proof of Theorem 6

Let G be a graph, $X \subseteq V(G)$, and \mathscr{P} be a set of disjoint paths of G-X each containing at least one edge with $|X| \geqslant 1$ and $|X| + |\mathscr{P}| \leqslant \kappa_G(X \cup V(\mathscr{P})) - i_G(\mathscr{P})$. Because of Theorem 1 we may assume $\mathscr{P} \neq \emptyset$. The proof is by induction on $i_G(\mathscr{P})$. For $i_G(\mathscr{P}) = 0$ we are done with $|\mathscr{P}| < |X| + |\mathscr{P}| \leqslant \kappa_G(X \cup V(\mathscr{P})) \leqslant \kappa_G(V(\mathscr{P}))$ and by using Theorems 3 and 5. Hence, we may assume $i_G(\mathscr{P}) \geqslant 1$. Let a be an inner vertex of a path $P \in \mathscr{P}$ and $N(a) \cap V(P) = \{b, c\}$. The graph G', the path P', and the set \mathscr{P}' are defined by $V(G') = V(G) \setminus \{a\}$, $E(G') = E(G[V(G) \setminus \{a\}]) \cup \{bc\}, V(P') = V(P) \setminus \{a\}$, $E(P') = E(G[P \setminus \{a\}]) \cup \{bc\}$, and $\mathscr{P}' = (\mathscr{P} \setminus \{P\}) \cup \{P'\}$. Clearly, $\kappa_{G'}(X \cup V(\mathscr{P}')) \geqslant \kappa_G(X \cup V(\mathscr{P})) - 1$, $i_{G'}(\mathscr{P}') = i_G(\mathscr{P}) - 1$, and $|X| + |\mathscr{P}'| = |X| + |\mathscr{P}| \leqslant \kappa_G(X \cup V(\mathscr{P})) - i_G(\mathscr{P}) \leqslant \kappa_{G'}(X \cup V(\mathscr{P}')) - i_{G'}(\mathscr{P}')$. Hence, by the induction hypothesis there exists an $(X \cup \mathscr{P}')$ -cycle of G. \square

2.2. Proof of Theorem 7

A more detailed version of Menger's Theorem (see [10]) is the following lemma.

Download English Version:

https://daneshyari.com/en/article/4651150

Download Persian Version:

https://daneshyari.com/article/4651150

<u>Daneshyari.com</u>