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On a cycle through a specified linear forest of a graph
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Abstract

Results on the existence of a cycle containing a given linear forest are proved.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction and results

We use [3] for terminology and notation not defined here and consider finite simple graphs only. Let G be a graph,
X ⊆ V (G), and G[X] be the subgraph of G induced by X. For S ⊂ V (G) let �X(G−S) be the number of components
of the graph G − S, which contain a vertex of X. Let �(X) be infinity if G[X] is complete or the minimum cardinality
of a set S ⊂ V (G) with �X(G − S)�2. A linear forest is an acyclic graph of maximum degree at most 2. Given a
linear forest L (as a subgraph of G) with its vertex set V (L), a cycle of G containing V (L) and all edges of L is an
L-cycle. Theorems 1 and 2 are consequences of results in [2,4] and in [6,11], respectively.

Theorem 1 (Broersma et al. [2], Dirac [4]). Let G be a graph, X ⊆ V (G), |X|��(X), and �(X)�2. Then G has an
X-cycle.

Given t > 0, X is called t-tough in G if �X(G − S) = 1 or �X(G − S)� |S|/t for all S ⊂ V (G). Let �X(G) be the
maximum value of t for which X is t-tough in G. If G[X] is complete we define �X(G) = ∞.

Theorem 2 (Harant [6], Watkins and Mesner [11]). Let G be a graph, X ⊆ V (G), |X|��(X) + 1, and �(X)�3. If
�X(G)�1, then G has an X-cycle.

The following theorem was proved in [5].

Theorem 3 (Häggkvist and Thomassen [5]). If Y is a set of independent edges of a graph G with |Y |��(V (Y )) − 1
then G has a Y-cycle.
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In [8] Kawarabayashi gave the outline of a proof of the Lovász–Woodall–Conjecture (see [9,12]) concerning the
existence of a cycle through �(V (G)) independent edges of a graph G and referred to forthcoming papers.

Theorem 4 (Kawarabayashi [8]). If Y is a set of independent edges of a graph G with |Y |��(V (G)) and �(V (G))�2
then G has a Y-cycle unless �(V (G)) is odd and G − Y is disconnected.

For a path P let e(P ) be the number of edges of P and for a path set P we define e(P) = ∑
P∈P e(P ).

Theorem 5 (Harant [6]). Let G be a graph, X ⊆ V (G), P be a set of disjoint paths of length at least one in G − X,
|X| + e(P)��(X ∪ V (P)), and �(X ∪ V (P))�2. If G has a P-cycle then G has an (X ∪ P)-cycle.

Results on the length of an (X ∪ P)-cycle in case |X| + e(P)��(V (G)) − 2 can be found in [7]. Theorem 6 is a
consequence of Theorems 3 and 5. We give a short proof here. Theorem 7 is our main result.

Theorem 6. Let G be a graph, ∅ �= X ⊆ V (G), P be a set of disjoint paths of length at least one in G − X, and
�(X ∪ V (P))�2. If |X| + e(P)��(X ∪ V (P)) then G has an (X ∪ P)-cycle.

Theorem 7. Let G be a graph, X ⊆ V (G) with |X|�4, and P be a nonempty set of disjoint paths of length at least
one in G − X. If |X| + e(P)��(X ∪ V (P)) + 1 and �X(G) > �(X ∪ V (P))/|X| then G has an (X ∪ P)-cycle.

2. Proofs

For A, B ⊆ V (G) an A − B-path is a path P between A and B such that |V (P ) ∩ A| = |V (P ) ∩ B| = 1. A common
vertex of A and B is also an A − B-path. A set S ⊆ V (G) separates A and B if any A − B-path contains a vertex in S.
Let N(v) be the neighbourhood of v ∈ V (G). Without mentioning in each case, we shall use the following properties.

(�1) A is t-tough if B is t-tough for A ⊆ B ⊆ V (G).
(�2) �(A)��(B) if A ⊆ B ⊆ V (G).
(�3) Let A, B, B ′ ⊆ V (G) such that B ′ ⊆ B. If S ⊆ V (G) separates A and B then S also separates A and B ′.
(�4) Let a ∈ A ⊆ V (G) and �(A) < ∞. Then |N(a)|��(A) or A ⊆ {a} ∪ N(a).
(�5) Let A ⊂ V (G) and b ∈ V (G)\A. If |A|��(A ∪ {b}) then A and N(b) cannot be separated by a set of at most

�(A ∪ {b}) − 1 vertices.

Let i(P )be the number of inner vertices of a path P and i(P)=∑
P∈P i(P ) for a path setP. Obviously, |P|+i(P)=e(P).

In the sequel we shall write iG(.) and �G(.) instead of i(.) and �(.), respectively, if it is important to distinguish in
which graph G these values are calculated.

2.1. Proof of Theorem 6

Let G be a graph, X ⊆ V (G), and P be a set of disjoint paths of G−X each containing at least one edge with |X|�1
and |X| + |P|��G(X ∪ V (P)) − iG(P). Because of Theorem 1 we may assume P �= ∅. The proof is by induction
on iG(P). For iG(P) = 0 we are done with |P| < |X| + |P|��G(X ∪ V (P))��G(V (P)) and by using Theorems 3
and 5. Hence, we may assume iG(P)�1. Let a be an inner vertex of a path P ∈ P and N(a) ∩ V (P ) = {b, c}. The
graph G′, the path P ′, and the set P′ are defined by V (G′) = V (G)\{a}, E(G′) = E(G[V (G)\{a}]) ∪ {bc},V (P ′) =
V (P )\{a}, E(P ′) = E(G[P \{a}]) ∪ {bc},and P′ = (P\{P }) ∪ {P ′}. Clearly, �G′(X ∪ V (P′))��G(X ∪ V (P)) − 1,
iG′(P′) = iG(P) − 1, and |X| + |P′| = |X| + |P|��G(X ∪ V (P)) − iG(P)��G′(X ∪ V (P′)) − iG′(P′). Hence,
by the induction hypothesis there exists an (X ∪ P′)-cycle C′ of G′ with bc ∈ E(C′). The cycle obtained from C′ by
replacing the edge bc by the path bac is an (X ∪ P)-cycle of G. �

2.2. Proof of Theorem 7

A more detailed version of Menger’s Theorem (see [10]) is the following lemma.
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