

Available online at www.sciencedirect.com

Discrete Mathematics 307 (2007) 916-922

www.elsevier.com/locate/disc

[r, s, t]-Chromatic numbers and hereditary properties of graphs

Arnfried Kemnitz^a, Massimiliano Marangio^a, Peter Mihók^{b, c}

^aComputational Mathematics, Technische Universität Braunschweig, Pockelsstr. 14, D-38106 Braunschweig, Germany

^bDepartment of Applied Mathematics and Informatics, Faculty of Economics, Technical University of Kosice, B. Nemcovej 32, 04001 Kosice

^cMathematical Institute of Slovak Academy of Sciences, Grešákova 6, 04001 Kosice, Slovakia

Received 19 November 2003; received in revised form 5 March 2004; accepted 22 November 2005

Available online 10 October 2006

Abstract

Given non-negative integers r, s, and t, an [r, s, t]-coloring of a graph G = (V(G), E(G)) is a mapping c from $V(G) \cup E(G)$ to the color set $\{0, 1, \ldots, k-1\}$, $k \in \mathbb{N}$, such that $|c(v_i) - c(v_j)| \geqslant r$ for every two adjacent vertices $v_i, v_j, |c(e_i) - c(e_j)| \geqslant s$ for every two adjacent edges e_i, e_j , and $|c(v_i) - c(e_j)| \geqslant t$ for all pairs of incident vertices and edges, respectively. The [r, s, t]-chromatic number $\chi_{r,s,t}(G)$ of G is defined to be the minimum k such that G admits an [r, s, t]-coloring.

We characterize the properties $\mathcal{O}(r,s,t,k) = \{G: \chi_{r,s,t}(G) \leq k\}$ for k=1,2,3 as well as for $k \geq 3$ and $\max\{r,s,t\} = 1$ using well-known hereditary properties. The main results for $k \geq 3$ are summarized in a diagram. © 2006 Elsevier B.V. All rights reserved.

MSC: 05C15

Keywords: [r, s, t]-Chromatic number; Hereditary properties; Generalized colorings

1. Introduction

Given non-negative integers r, s, and t with $\max\{r,s,t\} \geqslant 1$, an [r,s,t]-coloring of a finite and simple graph G with vertex set V(G) and edge set E(G) is a mapping c from $V(G) \cup E(G)$ to the color set $\{0,1,\ldots,k-1\}, k \in \mathbb{N}$, such that $\left|c(v_i)-c(v_j)\right| \geqslant r$ for every two adjacent vertices $v_i,v_j,\left|c(e_i)-c(e_j)\right| \geqslant s$ for every two adjacent edges e_i,e_j , and $\left|c(v_i)-c(e_j)\right| \geqslant t$ for all pairs of incident vertices and edges, respectively. The [r,s,t]-chromatic number $\chi_{r,s,t}(G)$ of G is defined to be the minimum k such that G admits an [r,s,t]-coloring.

This is an obvious generalization of the classical graph colorings since a [1, 0, 0]-coloring is an ordinary vertex coloring, a [0, 1, 0]-coloring is an edge coloring, and a [1, 1, 1]-coloring is a total coloring. First results on this kind of graph coloring can be found in [8].

Let \mathscr{I} be the set of all finite, simple graphs. A *graph property* \mathscr{P} is any isomorphism-closed subclass of \mathscr{I} . A property \mathscr{P} is called *additive* if $G \cup H \in \mathscr{P}$ whenever $G \in \mathscr{P}$ and $H \in \mathscr{P}$. A property \mathscr{P} is called *hereditary* if $G \in \mathscr{P}$ and $H \subseteq G$ imply $H \in \mathscr{P}$. Analogously, a property \mathscr{P} is called *induced hereditary* if for a graph G with the property \mathscr{P} all of its induced subgraphs have the property \mathscr{P} . For surveys of hereditary properties of graphs see, e.g., [3,4,11].

Every hereditary property \mathscr{P} is determined by the set of *minimal forbidden subgraphs* $F(\mathscr{P}) = \{G \in \overline{\mathscr{P}}: \text{ every proper subgraph of } G \text{ is in } \mathscr{P}\}.$

E-mail addresses: a.kemnitz@tu-bs.de (A. Kemnitz), m.marangio@web.de (M. Marangio), peter.mihok@tuke.sk (P. Mihók).

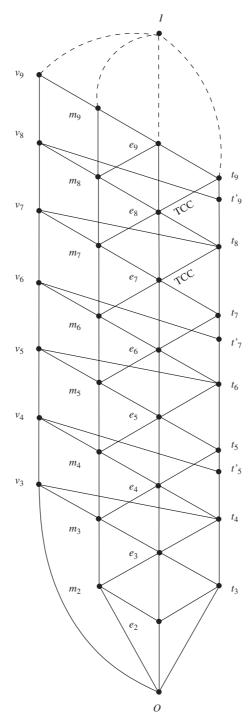


Fig. 1. Properties $\mathcal{O}(r, s, t, k)$ with $\max\{r, s, t\} \leqslant 1$ $(v_k = \mathcal{O}(1, 0, 1, k), m_k = \mathcal{O}(1, 1, 0, k), e_k = \mathcal{O}(0, 1, 1, k), t_k = \mathcal{O}(1, 1, 1, k), t_k' = t_k \cap \mathcal{I}_{k-2}, O = \mathcal{O}, I = \mathcal{I}).$

In this paper we investigate the properties $\mathcal{O}(r,s,t,k) = \{G \in \mathscr{I} : \chi_{r,s,t}(G) \leqslant k\}$ and the sets $F(\mathcal{O}(r,s,t,k)) = \{G \in \mathscr{I} : \chi_{r,s,t}(G) \leqslant k\}$ and the sets $F(\mathcal{O}(r,s,t,k)) = \{G \in \mathscr{I} : \chi_{r,s,t}(G) \leqslant k\}$ and the sets $F(\mathcal{O}(r,s,t,k)) = \{G \in \mathscr{I} : \chi_{r,s,t}(G) \leqslant k\}$ and the sets $F(\mathcal{O}(r,s,t,k)) = \{G \in \mathscr{I} : \chi_{r,s,t}(G) \leqslant k\}$ and the sets $F(\mathcal{O}(r,s,t,k)) = \{G \in \mathscr{I} : \chi_{r,s,t}(G) \leqslant k\}$ and the sets $F(\mathcal{O}(r,s,t,k)) = \{G \in \mathscr{I} : \chi_{r,s,t}(G) \leqslant k\}$ and the sets $F(\mathcal{O}(r,s,t,k)) = \{G \in \mathscr{I} : \chi_{r,s,t}(G) \leqslant k\}$ and the sets $F(\mathcal{O}(r,s,t,k)) = \{G \in \mathscr{I} : \chi_{r,s,t}(G) \leqslant k\}$ and $\chi_{r,s,t}(G) \leqslant k\}$ for all proper subgraphs $F(\mathcal{O}(r,s,t,k)) = \{G \in \mathscr{I} : \chi_{r,s,t}(G) \leqslant k\}$ and $\chi_{r,s,t}(G) \leqslant k\}$ for all proper subgraphs $F(\mathcal{O}(r,s,t,k)) = \{G \in \mathscr{I} : \chi_{r,s,t}(G) \leqslant k\}$ and $\chi_{r,s,t}(G) \leqslant k\}$ for all proper subgraphs $F(\mathcal{O}(r,s,t,k)) = \{G \in \mathscr{I} : \chi_{r,s,t}(G) \leqslant k\}$ for $\chi_{r,s,t}(G) \leqslant k\}$ for $\chi_{r,s,t}(G) \leqslant k\}$ for $\chi_{r,s,t}(G) \leqslant k\}$ for $\chi_{r,s,t}(G) \leqslant k$ for $\chi_{r,s,t}(G) \leqslant k\}$ for $\chi_{r,s,t}(G) \leqslant k$ for $\chi_{r,s,t}(G) \leqslant k\}$ for $\chi_{r,s,t}(G) \leqslant k$ for $\chi_{r,s,t}(G) \leqslant k$

Since $\chi_{r,s,t}(H) \leqslant \chi_{r,s,t}(G)$ if H is a subgraph of G, properties $\mathcal{O}(r,s,t,k)$ are hereditary and induced hereditary and since $\chi_{r,s,t}(C_i) \leqslant k$ for all components C_i of G implies $\chi_{r,s,t}(G) \leqslant k$, $\mathcal{O}(r,s,t,k)$ are also additive properties.

Download English Version:

https://daneshyari.com/en/article/4651154

Download Persian Version:

https://daneshyari.com/article/4651154

<u>Daneshyari.com</u>