

Available online at www.sciencedirect.com

Discrete Mathematics 306 (2006) 2943-2953

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

Distance irredundance and connected domination numbers of a graph $\stackrel{\swarrow}{\sim}$

Jun-Ming Xu^{a,*}, Fang Tian^{a, b}, Jia Huang^a

^aDepartment of Mathematics, University of Science and Technology of China, Hefei 230026, China ^bDepartment of Applied Mathematics, Shanghai University of Finance and Economics, Shanghai 200433, China

Received 13 May 2004; received in revised form 28 February 2006; accepted 22 March 2006 Available online 4 August 2006

Abstract

Let *k* be a positive integer and *G* be a connected graph. This paper considers the relations among four graph theoretical parameters: the *k*-domination number $\gamma_k(G)$, the connected *k*-domination number $\gamma_k^c(G)$; the *k*-independent domination number $\gamma_k^i(G)$ and the *k*-irredundance number $ir_k(G)$. The authors prove that if an ir_k -set *X* is a *k*-independent set of *G*, then $ir_k(G) = \gamma_k(G) = \gamma_k^i(G)$, and that for $k \ge 2$, $\gamma_k^c(G) = 1$ if $ir_k(G) = 1$, $\gamma_k^c(G) \le \max\{(2k+1)ir_k(G) - 2k, \frac{5}{2}ir_k(G)k - \frac{7}{2}k + 2\}$ if $ir_k(G)$ is odd, and $\gamma_k^c(G) \le \frac{5}{2}ir_k(G)k - 3k + 2$ if $ir_k(G)$ is even, which generalize some known results. © 2006 Elsevier B.V. All rights reserved.

MSC: 05C69

Keywords: k-Irredundance number; k-Domination number; Connected k-domination number; k-Independent domination number; k-Independent set

1. Introduction

For terminology and notation on graph theory not given here, the reader is referred to [5] or [15]. Let G = (V, E) be a finite simple graph with vertex set V = V(G) and edge set E = E(G). For $S \subseteq V(G)$, G[S] denotes the subgraph of G induced by S. The distance $d_G(x, y)$ between two vertices x and y is the length of a shortest xy-path in G. Let k be a positive integer. For every vertex $x \in V(G)$, the open k-neighborhood $N_k(x)$ of x is defined as $N_k(x) = \{y \in V(G) : d_G(x, y) \leq k, x \neq y\}$. The closed k-neighborhood $N_k[x]$ of x in G is defined as $N_k(x) \cup \{x\}$. Likewise, one may define the open (resp. closed) k-neighborhood $N_k(x)$ (resp. $N_k[x]$) of vertices in X.

For $x \in X$, we use $I_k(x \in X)$ to denote the set of vertices of G that are in $N_k[x]$ but not in $N_k[X - \{x\}]$. If $I_k(x \in X) = \emptyset$, then x is said to be k-redundant in X. In the context of a communication network, this means that any vertex that may receive communications from X within distance k may also be informed from $X - \{x\}$ within distance k. A set X containing no k-redundant vertex is called k-irredundant, that is, $I_k(x \in X) \neq \emptyset$ for any $x \in X$.

[☆] The work was supported by NNSF of China.

^{*} Corresponding author. Tel.: +86 5513603619; fax: +86 5513601005. *E-mail address:* xujm@ustc.edu.cn (J.-M. Xu).

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter @ 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2006.03.075

A k-irredundant set X of G is called to be maximal if $X \cup \{y\}$ is not a k-irredundant set of G for any $y \in V(G) - X$. The k-irredundance number of G, denoted by $ir_k(G)$, is the minimum cardinality taken over all maximal k-irredundant sets of G. A maximal k-irredundant set of cardinality $ir_k(G)$ is called an ir_k -set. The concept of the k-irredundance was introduced by Hattingh and Henning [9].

A set *D* of vertices in *G* is called to be a *k*-dominating set of *G* if every vertex of V(G) - D is within distance *k* from some vertex of *D*. A *k*-dominating set *D* is called to be connected if *G*[*D*], a subgraph of *G* induced by *D*, is connected. The minimum cardinality among all *k*-dominating sets (resp. connected *k*-dominating sets) of *G* is called the *k*-domination number (resp. connected *k*-domination number) of *G* and is denoted by $\gamma_k(G)$ (resp. $\gamma_k^c(G)$). The concept of the *k*-dominating set was introduced by Chang and Nemhauser [6,7].

A set *I* of vertices of *G* is said to be a *k*-independent set if every vertex in *I* is at distance at least k + 1 from every other vertex of *I* in *G*; and a *k*-independent dominating set if *I* is a *k*-independent set and a *k*-dominating set, or equivalently, is a maximal *k*-independent set. The *k*-independent number $\alpha_k(G)$ is defined as the maximum cardinality taken over all *k*-independent sets of *G*; the *k*-independent domination number $\gamma_k^i(G)$ is defined as the minimum cardinality taken over all *k*-independent dominating sets of *G*.

Since the distance versions of domination have a strong background of applications, many efforts have been made by several authors to establish the relationships among distance parameters (see, for example [6,7,9–14]). It is quite difficult to determine the value of $\gamma_k(G)$ or $\gamma_k^c(G)$ for any given graph *G*. However, from definitions, it is clear that $ir_k(G) \leq \gamma_k(G) \leq \gamma_k^i(G)$ for any graph *G*. For k = 1, Allan et al. [2] proved that if an ir_1 -set *X* is an independent set of *G*, then $ir_1(G) = \gamma_1(G) = \gamma_1^i(G)$. Recently, Li [13] has established an upper bound of $\gamma_k^c(G)$ in terms of other graph theoretical parameter. For k = 1, Allan and Laskar [1], independently, Bollobas and Cockayne [4] established $\gamma_1(G) \leq 2ir_1(G) - 1$, which is extended to $\gamma_k(G) \leq 2ir_k(G) - 1$ by Hattingh and Henning [9]; Bo and Liu [3] established $\gamma_1^c(G) \leq 3ir_1(G) - 2$.

In this paper, we prove that if an ir_k -set X is a k-independent set of G then $ir_k(G) = \gamma_k(G) = \gamma_k^i(G)$, and that, for a connected graph G and $k \ge 2$, $\gamma_k^c(G) = 1$ if $ir_k(G) = 1$, $\gamma_k^c(G) \le \max\{(2k+1)ir_k(G) - 2k, \frac{5}{2}ir_k(G)k - \frac{7}{2}k + 2\}$ if $ir_k(G)$ is odd, and $\gamma_k^c(G) \le \frac{5}{2}ir_k(G)k - 3k + 2$ if $ir_k(G)$ is even, and these bounds are best possible. The former generalizes Allan et al.'s result and the latter generalizes Bo and Liu's result. As a byproduct of the proof of our main result, we also obtain $\gamma_k(G) \le 2ir_k(G) - 1$.

The proofs of our main results are in Section 3 and some lemmas are given in Section 2.

2. Lemmas

A k-independent set I of G is called to be maximal if $X \cup \{y\}$ is not a k-independent set of G for any $y \in V(G) - X$. A k-dominating set D of G is called to be minimal if $D - \{x\}$ is not a k-dominating set of G for any $x \in D$.

Lemma 2.1. Let I be a k-independent set of G. Then I is maximal if and only if I is a minimal k-dominating set, whereby $\gamma_k^i(G) \leq \alpha_k(G)$.

Proof. Since *I* is a *k*-independent set of *G*, by definition, *I* is maximal if and only if every vertex of V(G) - I is within distance *k* from some vertex of *I* and the distance between two vertices in *I* is larger than *k* or, equivalently, *I* is a minimal *k*-dominating set of *G*. \Box

The special case for k = 1 of the following result is due to Cockayne and Hedetniemi [8], and it is stated in Lemma 2 in [9] without proof.

Lemma 2.2. Let D be a k-dominating set of G. Then D is minimal if and only if D is a maximal k-irredundant set, whereby $ir_k(G) \leq \gamma_k(G)$.

Proof. Since *D* is a *k*-dominating set of *G*, by definition, *D* is minimal if and only if every vertex of V(G) - D is within distance *k* from some vertex of *D* and the removal of any vertex $x \in D$ results in a vertex *y* in $V(G) - (D - \{x\})$ at distance greater than *k* from every vertex in $D - \{x\}$ or, equivalently, $I_k(x \in D) \neq \emptyset$ for any $x \in D$ but there is some $x \in D' = D \cup \{y\}$ such that $I_k(x \in D') = \emptyset$ for any $y \in V(G) - D$, that is, *D* is a maximal *k*-irredundant set of *G*.

Download English Version:

https://daneshyari.com/en/article/4651181

Download Persian Version:

https://daneshyari.com/article/4651181

Daneshyari.com