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Abstract

Let k be a positive integer and G be a connected graph. This paper considers the relations among four graph theoretical parameters:
the k-domination number �k(G), the connected k-domination number �c

k
(G); the k-independent domination number �i

k
(G) and the

k-irredundance number irk(G). The authors prove that if an irk-set X is a k-independent set of G, then irk(G) = �k(G) = �i
k
(G),

and that for k�2, �c
k
(G) = 1 if irk(G) = 1, �c

k
(G)� max{(2k + 1)irk(G) − 2k, 5

2 irk(G)k − 7
2 k + 2} if irk(G) is odd, and

�c
k
(G)� 5

2 irk(G)k − 3k + 2 if irk(G) is even, which generalize some known results.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

For terminology and notation on graph theory not given here, the reader is referred to [5] or [15]. Let G = (V , E)

be a finite simple graph with vertex set V = V (G) and edge set E = E(G). For S ⊆ V (G), G[S] denotes the
subgraph of G induced by S. The distance dG(x, y) between two vertices x and y is the length of a shortest xy-path
in G. Let k be a positive integer. For every vertex x ∈ V (G), the open k-neighborhood Nk(x) of x is defined as
Nk(x) = {y ∈ V (G) : dG(x, y)�k, x �= y}. The closed k-neighborhood Nk[x] of x in G is defined as Nk(x) ∪ {x}.
Likewise, one may define the open (resp. closed) k-neighborhood of a set X of vertices in V (G), denoted by Nk(X)

(resp. Nk[X]), as the union of the open (resp. closed) k-neighborhood Nk(x) (resp. Nk[x]) of vertices in X.
For x ∈ X, we use Ik(x ∈ X) to denote the set of vertices of G that are in Nk[x] but not in Nk[X − {x}]. If

Ik(x ∈ X) = ∅, then x is said to be k-redundant in X. In the context of a communication network, this means that
any vertex that may receive communications from X within distance k may also be informed from X − {x} within
distance k. A set X containing no k-redundant vertex is called k-irredundant, that is, Ik(x ∈ X) �= ∅ for any x ∈ X.
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A k-irredundant set X of G is called to be maximal if X ∪ {y} is not a k-irredundant set of G for any y ∈ V (G) − X.
The k-irredundance number of G, denoted by irk(G), is the minimum cardinality taken over all maximal k-irredundant
sets of G. A maximal k-irredundant set of cardinality irk(G) is called an irk-set. The concept of the k-irredundance
was introduced by Hattingh and Henning [9].

A set D of vertices in G is called to be a k-dominating set of G if every vertex of V (G) − D is within distance k
from some vertex of D. A k-dominating set D is called to be connected if G[D], a subgraph of G induced by D, is
connected. The minimum cardinality among all k-dominating sets (resp. connected k-dominating sets) of G is called
the k-domination number (resp. connected k-domination number) of G and is denoted by �k(G) (resp. �c

k(G)). The
concept of the k-dominating set was introduced by Chang and Nemhauser [6,7].

A set I of vertices of G is said to be a k-independent set if every vertex in I is at distance at least k+1 from every other
vertex of I in G; and a k-independent dominating set if I is a k-independent set and a k-dominating set, or equivalently,
is a maximal k-independent set. The k-independent number �k(G) is defined as the maximum cardinality taken over
all k-independent sets of G; the k-independent domination number �i

k(G) is defined as the minimum cardinality taken
over all k-independent dominating sets of G.

Since the distance versions of domination have a strong background of applications, many efforts have been made
by several authors to establish the relationships among distance parameters (see, for example [6,7,9–14]). It is quite
difficult to determine the value of �k(G) or �c

k(G) for any given graph G. However, from definitions, it is clear that
irk(G)��k(G)��i

k(G) for any graph G. For k = 1, Allan et al. [2] proved that if an ir1-set X is an independent set
of G, then ir1(G) = �1(G) = �i

1(G). Recently, Li [13] has established an upper bound of �c
k(G) in terms of other

graph theoretical parameter. For k = 1, Allan and Laskar [1], independently, Bollobas and Cockayne [4] established
�1(G)�2ir1(G)−1, which is extended to �k(G)�2irk(G)−1 by Hattingh and Henning [9]; Bo and Liu [3] established

�c
1(G)�3ir1(G) − 2.

In this paper, we prove that if an irk-set X is a k-independent set of G then irk(G) = �k(G) = �i
k(G), and that, for

a connected graph G and k�2, �c
k(G) = 1 if irk(G) = 1, �c

k(G)� max{(2k + 1)irk(G) − 2k, 5
2 irk(G)k − 7

2k + 2}
if irk(G) is odd, and �c

k(G)� 5
2 irk(G)k − 3k + 2 if irk(G) is even, and these bounds are best possible. The former

generalizes Allan et al.’s result and the latter generalizes Bo and Liu’s result. As a byproduct of the proof of our main
result, we also obtain �k(G)�2irk(G) − 1.

The proofs of our main results are in Section 3 and some lemmas are given in Section 2.

2. Lemmas

A k-independent set I of G is called to be maximal if X ∪ {y} is not a k-independent set of G for any y ∈ V (G) − X.
A k-dominating set D of G is called to be minimal if D − {x} is not a k-dominating set of G for any x ∈ D.

Lemma 2.1. Let I be a k-independent set of G. Then I is maximal if and only if I is a minimal k-dominating set, whereby
�i
k(G)��k(G).

Proof. Since I is a k-independent set of G, by definition, I is maximal if and only if every vertex of V (G) − I is
within distance k from some vertex of I and the distance between two vertices in I is larger than k or, equivalently, I is
a minimal k-dominating set of G. �

The special case for k = 1 of the following result is due to Cockayne and Hedetniemi [8], and it is stated in Lemma
2 in [9] without proof.

Lemma 2.2. Let D be a k-dominating set of G. Then D is minimal if and only if D is a maximal k-irredundant set,
whereby irk(G)��k(G).

Proof. Since D is a k-dominating set of G, by definition, D is minimal if and only if every vertex of V (G)−D is within
distance k from some vertex of D and the removal of any vertex x ∈ D results in a vertex y in V (G) − (D − {x}) at
distance greater than k from every vertex in D − {x} or, equivalently, Ik(x ∈ D) �= ∅ for any x ∈ D but there is some
x ∈ D′ = D ∪ {y} such that Ik(x ∈ D′) = ∅ for any y ∈ V (G) − D, that is, D is a maximal k-irredundant set of G. �
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