

Available online at www.sciencedirect.com

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 53 (2016) 83-96

www.elsevier.com/locate/endm

Gregarious Kite Decomposition of Tensor Product of Complete Graphs

A. Tamil Elakkiya²

Department of Mathematics Bannari Amman Institute of Technology Erode, Tamil Nadu, India.

A. Muthusamy 1,3

Department of Mathematics Periyar University Salem, Tamil Nadu, India.

Abstract

A kite decomposition of a multipartite graph is said to be gregarious if every kite in the decomposition has all its vertices in different partite sets. In this paper, we show that there exists a gregarious kite decomposition of $K_m \times K_n$ if and only if $mn(m-1)(n-1) \equiv 0 \pmod{8}$, where \times denotes the tensor product of graphs.

Keywords: Kite, Tensor product, Gregarious kite decomposition.

 $^{^1\,}$ The author thanks DST, New Delhi, for their support through Grant No. SR/ S4/ MS: 828/ 13.

² Email: elakki.10gmail.com

³ Email: ambdu@yahoo.com

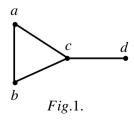
1 Introduction

A latin square of order n is an $n \times n$ array, such that each row and each column of the array contains each of the symbols from $\{1, 2, \ldots, n\}$ exactly once. A quasigroup of order n is a pair (Q, \circ) , where Q is a set of size n and " \circ " is a binary operation on Q such that for every pair of elements $a, b \in Q$, the equations $a \circ x = b$ and $y \circ a = b$ have unique solutions. It is well known that the multiplication table of a quasigroup defines a latin square. The terms latin square and quasigroup are interchangeable. A quasigroup (Q, \circ) is called *idempotent* if the identity $x^2 = x$ holds for all x in Q. A latin square of order n is said to be *idempotent* if cell (i, i) contains symbol i for $1 \leq i \leq n$.

Partition of G into subgraphs G_1, G_2, \ldots, G_r such that $E(G_i) \cap E(G_j) = \emptyset$ for $i \neq j \in \{1, 2, \ldots, r\}$ and $E(G) = \bigcup_{i=1}^r E(G_i)$ is called *decomposition* of G; In this case we write G as $G = G_1 \oplus G_2 \oplus \ldots \oplus G_r$, where \oplus denotes edge-disjoint sum of subgraphs. For an integer $\lambda, \lambda G$ denotes λ copies of G.

The tensor product $G \times H$ and the wreath product $G \otimes H$ of two graphs G and H are defined as follows: $V(G \times H) = V(G \otimes H) = \{(u, v) \mid u \in V(G), v \in V(H)\}$. $E(G \times H) = \{(u, v) (x, y) \mid u x \in E(G) \text{ and } v y \in E(H)\}$ and $E(G \otimes H) = \{(u, v) (x, y) \mid u = x \text{ and } v y \in E(H) \text{ or } u x \in E(G)\}$. It is well known that tensor product is commutative and distributive over an edge-disjoint union of subgraphs, that is, if $G=G_1 \oplus G_2 \oplus \ldots \oplus G_r$, then $G \times H=(G_1 \times H) \oplus (G_2 \times H) \oplus \ldots \oplus (G_r \times H)$. A graph G having partite sets V_1, V_2, \ldots, V_m with $|V_i| = n, 1 \leq i \leq n$ and $E(G)=\{uv \mid u \in V_i \text{ and } v \in V_j, \forall i \neq j\}$ is called *complete m-partite graph* and is denoted by $K_m(n)$. Note that $K_m(n)$ is same as the $K_m \otimes I_n$, where I_n is an independent set on n vertices.

A *kite* is a graph which is obtained by attaching an edge to a vertex of the triangle, see Fig.1. We denote the kite with edge set $\{ab, bc, ca, cd\}$ by (a, b, c; cd).



A subgraph of a multipartite graph G is said to be *gregarious* if each of its vertices lies in different partite sets of G.

Download English Version:

https://daneshyari.com/en/article/4651532

Download Persian Version:

https://daneshyari.com/article/4651532

Daneshyari.com