

Available online at www.sciencedirect.com

ScienceDirect

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 53 (2016) 165–172 www.elsevier.com/locate/endm

Dichromatic Polynomial of Product Digraphs

Dhanalakshmi K¹, Amalorpava Jerline J²,

Department of Mathematics, Holy Cross College, Trichy, India

Benedict Michaelraj L 3

Department of Mathematics, St. Joseph's College, Trichy, India

Abstract

A k-colouring of a digraph D = (V, A) is a partition of V(D) into k acyclic sets. The minimum integer k for which there exists a k-colouring of D is the *dichromatic* number $\chi_d(D)$ of the digraph D. In this paper, we obtain dichromatic polynomial of product digraphs.

Keywords: Colouring of a Digraph, Dichromatic Number, Tensor Product, Cartesian Product, Dichromatic Polynomial.

1 Introduction

A *k*-colouring of a digraph D = (V, A) is a partition of V(D) into *k* acyclic sets. This colouring parameter was first introduced by Neumann Lara [5]. The minimum integer *k* for which there exists a *k*-colouring of *D* is the *dichromatic* number $\chi_d(D)$ of the digraph *D*. For more ideas in this colouring, please refer

http://dx.doi.org/10.1016/j.endm.2016.05.015 1571-0653/© 2016 Elsevier B.V. All rights reserved.

¹ Email: dhanalakshmi.kannusamy@gmail.com

² Email: jermaths@gmail.com

³ Email: benedict.mraj@gmail.com

[2]. Let $D_1 = (V_1, A_1)$ and $D_2 = (V_2, A_2)$ be two digraphs. $u \to v$ means there is an arc from u to v. The *tensor product* of the digraphs D_1 and D_2 , denoted by $D_1 \times D_2$, has the vertex set $V(D_1 \times D_2) = V_1 \times V_2$ and $(u_1, v_1) \to (u_2, v_2)$ in $D_1 \times D_2$ if and only if, $u_1 \to u_2$ in D_1 and $v_1 \to v_2$ in D_2 . The *Cartesian* product of the digraphs D_1 and D_2 , denoted by $D_1 \Box D_2$, has the vertex set $V(D_1 \Box D_2) = V_1 \times V_2$ and $(u_1, v_1) \to (u_2, v_2)$ in $D_1 \Box D_2$ if and only if, either $u_1 = u_2$ in D_1 and $v_1 \to v_2$ in D_2 or $u_1 \to u_2$ in D_1 and $v_1 = v_2$ in D_2 . For a given digraph D and a given set of λ colours, the function $P(D; \lambda)$ is defined to be the number of ways of colouring D using the λ colours. The digraph D.a is obtained from contracting the arc a, where a = uv be any arc of D. For other notations in graphs and digraphs, please refer [1,3].

A directed walk in D is a finite alternating sequence $v_0a_1v_1a_2v_2...a_kv_k$ in which a_i is an arc joining v_{i-1} with v_i , for i = 1, 2, 3, ..., k. A directed path is a directed walk $v_0a_1v_1a_2v_2...a_kv_k$, in which all v_i 's are distinct. A directed walk $v_0a_1v_1a_2v_2...a_kv_k$ is a directed cycle if all v_i 's are distinct except v_0 and v_k and $v_0 = v_k$. For a digraph D, the underlying graph of D, denoted by G(D), has the same vertex set as that of D, where two vertices u and v are adjacent if uv or vu is an arc in D.

2 Main Results

We begin this section with some lemmas.

Lemma 2.1 [2] D is an acyclic digraph if, and only if, $\chi_d(D) = 1$.

Lemma 2.2 [2] Let D be a digraph without digons. Then $\chi_d(D) = 2$ if, and only if, D has a directed cycle.

Observation 2.3 Let us take two directed cycle of length l and m and $l \leq m$. If we rotate the directed cycle of length l and m, then we get a directed cycle of length r where r = [l, m]. If we take all the meeting points of the two directed cycles as vertices and rotations as arcs, then we get a directed cycle of length r.

Observation 2.4 If l and m are odd, then r = [l, m] is odd. If l and m are even, then r = [l, m] is even. If l is even and m is odd, then r = [l, m] is even.

Lemma 2.5 $D_1 \times D_2$ has a directed cycle if, and only if, both D_1 and D_2 have directed cycle.

Proof. Let $D_1 \times D_2$ has a directed cycle. Let $u_1v_1, u_2v_2, \ldots, u_lv_l, u_1v_1$ be a directed cycle. Let us arbitrarily choose any arc from $D_1 \times D_2$. Suppose $u_iv_j \rightarrow u_kv_l$, then $u_i \rightarrow u_k$ in D_1 and $v_j \rightarrow v_l$ in D_2 . This is true for all arcs in the

Download English Version:

https://daneshyari.com/en/article/4651539

Download Persian Version:

https://daneshyari.com/article/4651539

Daneshyari.com