

Available online at www.sciencedirect.com

ScienceDirect

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 53 (2016) 287–296 www.elsevier.com/locate/endm

Edge-Graceful Labelings of Connected Graphs

K.Kayathri¹

PG & Research Department of Mathematics Thiagarajar College, Madurai Tamil Nadu, India

R. Amutha 2,3

Department of Mathematics N.M.S.S. Vellaichamy Nadar College Madurai, Tamil Nadu, India

Abstract

Let G be a connected edge-graceful (p,q)-graph with q = kp + r, where k is an integer and $0 \le r < p$. In this paper, we prove that every edge-graceful labeling f of G induces $[(k+1)!]^r [k!]^{p-r}$ number of edge-graceful labelings of G.

Keywords: edge-graceful labeling, edge label, vertex label

1 Introduction

Rosa^[2] introduced the concept of graceful labeling as a means of attacking the problem of cyclically decomposing the complete graph into other graphs.

¹ Email: kayathrikanagavel@gmail.com

 $^{^2\,}$ Research supported by UGC-SERO under FDP of XII plan

³ Email: amuthasvn@gmail.com

In 1985, Sheng-Ping Lo[3] introduced a similar concept called edge-graceful labeling.

A (p,q)-graph G is said to be edge-graceful if there exists a bijection $f: E \to \{1, 2, ..., q\}$ such that the induced mapping $f': V \to \{0, 1, 2, ..., p-1\}$ defined by $f'(v) = \sum_{e=(v,u)\in E} f(e) \pmod{p}$ is also a bijection.

A necessary condition for edge-gracefulness of a (p,q)-graph G is $q(q+1) \equiv p(p-1)/2 \pmod{p}[3]$.

A detailed list of edge-graceful graphs is given in Gallian Survey of Graph Labelings[1].

In this paper, we derive new edge-graceful labelings from a known edgegraceful labeling. We first start with edge-graceful trees and unicyclic graphs and then extend for all edge-graceful connected graphs. We also enumerate the induced edge-graceful labelings of connected graphs.

For notational convenience, we denote the set of all edges incident with v as N'(v), for every $v \in V$.

2 Edge-Graceful Labelings of Trees and Unicyclic Graphs

Theorem 2.1 Let f be an edge-graceful labeling of a tree G with p vertices. Then the labeling F defined by F(e) = p - f(e) is also an edge-graceful labeling.

Proof. For the induced map F', $F'(v) \equiv \sum_{e \in N'(v)} F(e) \equiv \sum_{e \in N'(v)} (p-f(e)) \pmod{p}$ = p - f'(v). As f' is a bijection map with the range $\{0, 1, 2, ..., p-1\}$, so

p = p - f(v). As f is a bijection map with the range $\{0, 1, 2, ..., p - 1\}$, so also F'. Hence F is also an edge-graceful labeling of G.

Theorem 2.2 Let f be an edge-graceful labeling of an unicyclic graph with p

vertices. Then the labeling F defined by $F(e) = \begin{cases} p - f(e) & \text{if } f(e) is also an edge-graceful labeling.$

Proof. Suppose that the edge (w_1, w_2) has the label p, where $w_1, w_2 \in V$. Case (i) $v \notin \{w_1, w_2\}$.

For the induced map F', $F'(v) \equiv \sum_{e \in N'(v)} F(e) \equiv \sum_{e \in N'(v)} (p - f(e)) \pmod{p}$

= p - f'(v).Case (ii) $v \in \{w_1, w_2\}.$ Download English Version:

https://daneshyari.com/en/article/4651548

Download Persian Version:

https://daneshyari.com/article/4651548

Daneshyari.com