

Available online at www.sciencedirect.com

ScienceDirect

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 52 (2016) 109–116 www.elsevier.com/locate/endm

Separation Algorithm for Tree Partitioning Inequalities

Sunil Chopra^a, Kangbok Lee^{b,1}, Minseok Ryu^c and Sangho Shim^d

^a J.L. Kellogg Graduate School of Management, Northwestern University, Evanston, IL 60208, USA

^b Department of Business and Economics, York College, The City University of New York, Jamaica, NY 11451, USA

^c Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI 48109, USA

^d Department of Engineering, Robert Morris University, Moon Twp, PA 15108

Abstract

We consider the tree partition problem to partition the node set of a tree into subsets where the induced subgraph by each subset is connected and the total weight of nodes in a subset cannot exceed the capacity of the subset. We identify exponentially many valid inequalities for an integer programming formulation of the problem and develop a linear time separation algorithm for the valid inequalities.

 $Keywords: \ {\rm tree} \ {\rm partitioning}, {\rm integer} \ {\rm programming}, {\rm valid} \ {\rm inequality}, {\rm separation} \ {\rm algorithm}$

¹ Corresponding Author: klee5@york.cuny.edu

1 Introduction

Given a tree G = (V, E), the tree partition problem into at most k sub-trees is to partition the node set V into k subsets $N_1, ..., N_k$ at minimum total cost of inner-subset edges such that the induced graph by each non-empty subset is connected (subsets N_i may be empty.) We assume each subset N_i has its own capacity U_i . That is, the sum of the weights w_v of the nodes v in each subset N_i cannot exceed U_i . Assuming a uniform capacity $U_i = U$ for all i, Lukes [4] developed a pseudo-polynomial time dynamic programming algorithm. In our paper we assume that capacities U_i may be different from each other.

We formulate the tree partition problem as an integer programming problem. A partition $\Pi = (N_1, ..., N_k)$ is encoded into a binary incidence vector (x, y) where $x_{vt} = 1$ if node $v \in N_t$ for $v \in V$, $t \in \{1, ..., k\}$, and $y_e = 1$ if edge e is not cut by the partition for $e \in E$; *i.e.*, e is an inner-subset edge. We refer to y_e as an *edge variable*. The objective is to minimize the total cost of uncut (inner-subset) edges, $\sum_{e \in E} c_e y_e$ where c_e is the cost of edge e.

Without the connectivity restriction of each subset, the convex hull of the feasible binary incidence vectors is known in [2] to be spanned by the integer solutions which satisfy the following system of linear constraints:

- $(1) \quad (x,y) \ge 0,$
- (2) $\sum_{t=1}^{k} x_{vt} = 1$ for all nodes v,

(3)
$$x_{ut} + x_{wt} - y_{uw} \le 1$$
 for all edges uw and all $t = 1, ..., k$,

- (4) $\begin{cases} x_{ut} x_{wt} + y_{uw} \le 1 \\ -x_{ut} + x_{wt} + y_{uw} \le 1 \end{cases}$ for all edges uw and all t = 1, ..., k,
- (5) $\sum_{u \in V} w_u x_{ut} \le U_t \text{ for all } t = 1, ..., k.$

We refer to (2) as partitioning equations, (3) as edge inequalities, the pair of inequalities in (4) as arc inequalities and (5) as capacity inequalities, respectively.

Additional constraints are required for the induced subgraph by each subset N_i to be connected. The *path inequalities* are defined to be

(6) $x_{ut} + x_{vt} - x_{ht} \leq 1$ for all t and for all $u \neq v \in V$ and all $h \in \text{Path}(u, v)$, where Path(u, v) denotes the set of intermediate vertices in the path from u to v (Path[u, v] denotes the set of vertices in the path including u and v.) Note that the number of the path inequalities is $O(kn^3)$ in an arbitrary tree and Download English Version:

https://daneshyari.com/en/article/4651580

Download Persian Version:

https://daneshyari.com/article/4651580

Daneshyari.com