

Available online at www.sciencedirect.com

ScienceDirect

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 50 (2015) 103–108 www.elsevier.com/locate/endm

Excluding clocks

Pierre Aboulker ¹ Zhentao Li ² Stéphan Thomassé ³

Abstract

A clock is a cycle with a vertex that has exactly two neighbors on the cycle. We show that (triangle, cube, clock)-free graphs of girth at least 9 always contain a vertex of degree 2, partially answering to a conjecture of Trotignon. As a second result, we show that the class of clock-free graphs is χ -bounded by $\max(4, \omega(G))$.

Introduction 1

A graph G contains a graph F if an induced subgraph of G is isomorphic to F. A graph G is F-free if G does not contain F. For a set of graphs \mathcal{F} , G is \mathcal{F} -free if it is F-free for every $F \in \mathcal{F}$.

In this article, we study graphs without a *clock*, a graph made of an induced cycle C and a vertex x not in C with exactly two neighbors in C. We denote such a clock by (x, C) and call C the rim and x the center of the clock. We are interested in proving the existence of a vertex of degree at most 2 in clock-free graphs as well as bound their chromatic number.

Previous work

Clock-free graphs generalize several studied classes of graphs as we explain now.

A propeller is a graph made of an induced cycle C and a vertex u not in C that has at least 2 neighbors in C. Observe that the class of propeller-free

¹ Departamento de Matematicas, Universidad Andres Bello, Santiago, Chile. E-mail: pierreaboulker@gmail.com. Research supported by Fondecyt Postdoctoral grant 3150314 of CONICYT Chile.

² Département d'informatique, Ecole normale supérieure, CNRS, Paris, France. Email: zhentao.li@ens.fr

³ LIP, UMR 5668, ENS Lyon - CNRS - UCBL - INRIA, Université de Lyon, France. Email: stephan.thomasse@ens-lyon.fr. Partially supported by the ANR Project Stint under Contract ANR-13-BS02-0007

graphs is a proper subclass of clock-free graphs. In [1], it is proved that every propeller-free graph has a vertex of degree at most 2.

A theta is a graph made of three internally vertex-disjoint paths $P_1 = a \dots b$, $P_2 = a \dots b$, $P_3 = a \dots b$ of length at least 2 and such that no edges exist between the paths except the three edges incident to a and the three edges incident to b. Observe that a theta with a path of length exactly 2 is a clock, but a clock does not need to be a theta: if the rim is a triangle, then it is not a theta. But (triangle, theta)-free graphs form a proper subclass of clock-free graphs. In [3], it is proved that, if a (triangle, theta)-free graph contains a cube, then either it is the cube or it has a clique cutset and that every (triangle, cube, theta)-free graph has a vertex of degree at most 2.

Analogously, we have the two following structural results on clock-free graphs:

Lemma 1.1 4 If a clock-free graph G contains a triangle, then either G is a clique or G has a clique cutset.

Lemma 1.2 If a clock-free graph G contains a cube, then either G is a cube, or G has a clique cutset.

This leads to the following conjecture proposed by Trotignon that generalizes the two above results.

Conjecture 1.3 [4] A (triangle, cube, clock)-free graph contains a vertex of degree at most 2.

Our results

Our main result is the proof of Conjecture 1.3 for graphs of girth at least 9. In order to do so, we prove (see Section 2) a stronger version of it for 2-connected graphs that easily implies the 1-connected case.

Theorem 1.4 Every 2-connected clock-free graph with girth at least 9 contains at least two vertices of degree 2.

We observe that Conjecture 1.3 implies that the chromatic number of a (triangle,clock)-free graph is at most 3. So, since a clock-free graph that contains a triangle is either a clique or has a clique cutset, Conjecture 1.3 implies that $\chi(G) \leq \max(3, \omega(G))$ and this would be best possible. In Section 3, we prove that if G is a clock-free graph, then $\chi(G) \leq \max(4, \omega(G))$.

Notations

⁴ Due to space restriction, some of the proofs are omitted.

Download English Version:

https://daneshyari.com/en/article/4651635

Download Persian Version:

https://daneshyari.com/article/4651635

<u>Daneshyari.com</u>