

Available online at www.sciencedirect.com

ScienceDirect

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 50 (2015) 133–138 www.elsevier.com/locate/endm

Structural characterization and decomposition for cographs-(2, 1) and (1, 2): a natural generalization of threshold graphs ¹

F. Couto^a, L. Faria^b, S. Gravier^c, S. Klein^d, V. F. dos Santos ^e

a PESC/COPPE - UFRJ - Rio de Janeiro, Brazil, Email: nandavdc@gmail.com b IME - UERJ - Rio de Janeiro, Brasil, Email: luerbio@cos.ufrj.br c IF - UJF - Grenoble, France, Email: sylvain.gravier@ufj-grenoble.fr d IM, PESC/COPPE - UFRJ - Rio de Janeiro, Brazil, Email: sula@cos.ufrj.br e DECOM - CEFET-MG - Belo Horizonte, Brazil. Email:vinicius.santos@gmail.com

Abstract

A cograph is a graph without induced paths of length 4. A graph G is (2,1) if its vertex set can be partitioned into at most 2 independent sets and 1 clique. Cographs- (k,ℓ) have already a characterization by forbidden subgraphs, but no structural characterization is known, except for cographs-(1,1), i.e threshold graphs. In this paper, we present a structural characterization and a decomposition theorem for cographs-(2,1) and, consequently, for cographs-(1,2), leading to linear time recognition algorithms for both classes.

Keywords: Cographs-(2, 1), cographs-(1, 2), structural characterization, decomposition, threshold.

This work is partially supported by CAPES, CNPq, FAPERJ and FAPEMIG

1 Introduction

Perfect graphs attract a lot of attention in graph theory as well as partition problems. In [1,2,3], Brandstädt et al. defined a special class named (k,ℓ) -graphs, i.e, graphs whose vertex set can be partitioned into at most k independent sets and ℓ cliques: a generalization of split graphs, which can de described as (1,1)-graphs. Moreover, they proved that the recognition problem for this class of graphs is NP-complete for k or ℓ at least 3 and polynomial, otherwise. In this work we restrict this recognition problem to a subclass of perfect graphs: cographs.

Definition 1.1 [4] A cograph can be defined recursively as follows:

- (i) The trivial graph K_1 is a cograph;
- (ii) If G_1, G_2, \ldots, G_p are cographs, then $G_1 \cup G_2 \cup \ldots \cup G_p$ is a cograph,
- (iii) If G is a cograph, then \bar{G} is a cograph.

There are some equivalent forms of characterizing a cograph [4], but one of the well known is the characterization by forbidden subgraphs.

Theorem 1.2 [4]

A cograph is a graph without induced P_4 , i.e. induced paths of length 4.

Corneil in 1985 [5], presented the first, but not the only one, linear time algorithm to recognize cographs [6,7].

Threshold graphs are a special case of cographs and split graphs. More formally, a graph is a threshold graph if and only if it is both a cograph and a split graph. Introduced by Chvátal and Hammer in 1977 [8], Theorem 1.3 characterizes them.

Theorem 1.3 [8] For every graph G, the following three conditions are equivalent:

- (i) G is threshold;
- (ii) G has no induced subgraph isomorphic to $2K_2$, P_4 or C_4 ;
- (iii) There is an ordering v_1, v_2, \ldots, v_n of vertices of G and a partition of $\{v_1, v_2, \ldots, v_n\}$ into disjoint subsets P and Q such that:
 - Every $v_i \in P$ is adjacent to all vertices v_i with i < j,
 - Every $v_i \in Q$ is adjacent to none of the vertices v_i with i < j.

Thus, threshold graphs can be constructed from a trivial graph K_1 by repeated applications of the following two operations:

(i) Addition of a single isolated vertex to the graph.

Download English Version:

https://daneshyari.com/en/article/4651640

Download Persian Version:

https://daneshyari.com/article/4651640

Daneshyari.com