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Abstract

Given a graph G = (V,E), a perfect dominating set is a subset of vertices V ′ ⊆ V (G)
such that each vertex v ∈ V (G) \ V ′ is dominated by exactly one vertex v′ ∈ V ′.
An efficient dominating set is a perfect dominating set V ′ where V ′ is also an
independent set. These problems are usually posed in terms of edges instead of
vertices. Both problems, either for the vertex or edge variant, remains NP-Hard,
even when restricted to certain graphs families. We study both variants of the
problems for the circular-arc graphs, and show efficient algorithms for all of them.
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1 Introduction

Given a graph G = (V,E), a perfect dominating set is a subset of vertices
V ′ ⊆ V (G) such that each vertex v ∈ V (G) \ V ′ is dominated by exactly one
vertex v′ ∈ V ′. An efficient dominating set is a perfect vertex dominating
set V ′ where V ′ is also an independent set. Every graph G contains a per-
fect dominating set, for instance, take V (G). But not every graph contains
an efficient vertex dominating set. These problems consists in searching the
sets with minimum number of vertices. All of them are NP-hard, even when
restricted to certain graph families. The weighted version of these problems,
where each vertex v has a weight assigned ω(v), consists on finding a perfect
vertex dominating set where the sum of the weights is minimum. We denote
these problems as Minimum Weighted Perfect Vertex Domination (MWPVD),
Minimum Weighted Efficient Vertex Domination (MWEVD). We denote the
edge-versions of these problems as Minimum Weight Perfect Edge Domination
(MWPED) and Minimum Weight Efficient Edge Domination (MWEED). Ef-
ficient edge dominating sets are also known as dominating induced matchings,
and denoted as DIM’s. Note that for these edge-versions the dominating set
consists of edges instead of vertices, hence the weights are on the edges, and
the adjacency of two edges is defined as two edges that shares a vertex. We say
a pendant vertex (also known as leaf ) is one whose degree is exactly one. In
this paper we show results for the weighted perfect domination problem, and
for the efficient domination problem, restricted to circular-arc graphs. The
proofs and details of this paper can be found in [6].

2 Circular-Arc graphs

The following definitions and results come from [4]

Given a circular-arc modelM = (C,A) whereA = {A1 = (s1, t1), . . . , An =
(sn, tn)}, two points p, p′ ∈ C are equivalent if A(p) = A(p′). The 2n extreme
points from the n arcs of A divide the circle C in 2n segments of the following
types: (i) (si, tj) (ii) [ti, tj) (iii) (si, sj] (iv) [ti, sj]. We say the segments of
type (i) are intersection segments. It is easy to see that all points inside one
of the 2n segments are equivalent.

Corollary 2.1 [4]There are at most 2n distinct A(p).

Lemma 2.2 [4] Given a CA model M = (C,A), if there are no two or three
arcs of A that covers the entire circle C then M is an HCA model.

We consider the four variants of the mentioned problems for circular-arc
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