

Available online at www.sciencedirect.com

ScienceDirect

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 50 (2015) 427–432 www.elsevier.com/locate/endm

Toward a 6/5 Bound for the Minimum Cost 2-Edge Connected Subgraph Problem³

Sylvia Boyd ¹ Philippe Legault ²

School of Electrical Engineering and Computer Science
University of Ottawa
Ottawa. Canada

Abstract

Given a complete graph $K_n = (V, E)$ with non-negative edge costs $c \in \mathbb{R}^E$, the problem 2EC is that of finding a 2-edge connected spanning multi-subgraph of K_n of minimum cost. The integrality gap $\alpha 2EC$ of the linear programming relaxation $2EC^{\text{LP}}$ for 2EC has been conjectured to be $\frac{6}{5}$, although currently we only know that $\frac{6}{5} \leq \alpha 2EC \leq \frac{3}{2}$. In this paper, we explore the idea of using the structure of solutions for $2EC^{\text{LP}}$ and the concept of convex combination to obtain improved approximation algorithms for 2EC and bounds for $\alpha 2EC$. We focus our efforts on a family J of half-integer solutions that appear to give the largest integrality gap for $2EC^{\text{LP}}$. We successfully show that the conjecture $\alpha 2EC = \frac{6}{5}$ is true for any cost functions optimized by some $x^* \in J$. Our methods are constructive and thus also provide a $\frac{6}{5}$ -approximation algorithm for 2EC for these special cases.

Keywords: minimum cost 2-edge connected subgraph problem, approximation algorithm, integrality gap.

¹ Email: sylvia@site.uottawa.ca

² Email: philippe@legault.cc

³ This research was partially supported by grants from the Natural Sciences and Engineering Research Council of Canada

1 Introduction

The 2-edge connected subgraph problem (2EC) is that of finding a minimum cost 2-edge connected spanning multi-subgraph of the complete graph $K_n = (V, E)$ with costs $c \in \mathbb{R}^E_{\geq 0}$. This NP-hard problem has many important applications in network design. Currently, a 2-approximation algorithm exists for general 2EC [4], and a $\frac{3}{2}$ -approximation algorithm exists for metric c [3].

For $e \in E$, letting x_e represent the number of copies of e in the 2EC solution, 2EC can be formulated as an integer linear program (LP) as follows:

Minimize
$$cx$$

Subject to $\sum_{i \in S, j \notin S} (x_{ij} : i \in S, j \notin S) \ge 2$ for all $\emptyset \subset S \subset V$, (1)
 $x_e \ge 0$, and integer for all $e \in E$.

The LP relaxation of 2EC, denoted by $2EC^{LP}$, is obtained by relaxing the integer requirement in (1). We use OPT(2EC) (resp. $OPT(2EC^{LP})$) to denote the optimal value of 2EC (resp. $2EC^{LP}$). Also, given any feasible solution x^* for $2EC^{LP}$, its support graph G_{x^*} is defined to be the subgraph of K_n obtained by taking all edges $e \in E$ for which $x_e^* > 0$.

We are interested in the *integrality gap* $\alpha 2EC$ for $2EC^{\mathrm{LP}}$, which is the worst case ratio between $\mathrm{OPT}(2EC)$ and $\mathrm{OPT}(2EC^{\mathrm{LP}})$. This gives a measure of the quality of the lower bound provided by $2EC^{\mathrm{LP}}$. Even though 2EC has been intensively studied, little is known about $\alpha 2EC$, except that $\frac{6}{5} \leq \alpha 2EC \leq \frac{3}{2}$ [1]. Since it has been conjectured that $\alpha 2EC = \frac{6}{5}$ [1], a natural next step is to study $\alpha 2EC$ for some interesting class of cost functions.

We investigate $\alpha 2EC$ for the set of cost functions optimized at a particular family of feasible solutions for $2EC^{\text{LP}}$. A feasible solution x^* for $2EC^{\text{LP}}$ is called a half-integer solution if $x_e^* \in \{0, \frac{1}{2}, 1\}$ for all $x_e^* \in E$, and it is called degree-tight if $\sum_{uv} (x_{uv}^* : u \in V) = 2$ for all $v \in V$. Finally, a degree-tight half-integer solution is called a half-triangle solution if the edges in the support graph G_{x^*} corresponding to $x_e^* = \frac{1}{2}$ (called half-edges) form disjoint 3-cycles (called half-triangles) joined by paths of edges of value 1 (called 1-paths).

The half-triangle solutions are of interest for studies of $\alpha 2EC$ as there is evidence that $\frac{\text{OPT}(2EC)}{\text{OPT}(2EC^{\text{LP}})}$ is greatest for cost functions optimized at such solutions (see [1], [2]). For example, the largest such ratio known is asymptotically $\frac{6}{5}$, and comes from an infinite family of half-triangle solutions [1]. Also, in a computational study which found $\alpha 2EC$ exactly for all K_n up to n = 12, $\alpha 2EC$ was given by a half-triangle solution for all values of n [1].

Download English Version:

https://daneshyari.com/en/article/4651688

Download Persian Version:

https://daneshyari.com/article/4651688

<u>Daneshyari.com</u>