

Available online at www.sciencedirect.com

ScienceDirect

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 48 (2015) 73–80

www elsevier com/locate/endm

Towards Optimal Embedding of an Arbitrary Tree in a Graceful Tree

G. Sethuraman ¹ and P. Ragukumar ²

Department of Mathematics Anna University Chennai 600 025. India

Abstract

A function f is called a graceful labeling of a graph G with m edges, if f is an injective function from V(G) to $\{0,1,2,\cdots,m\}$ such that when every edge uv is assigned the edge label |f(u)-f(v)|, then the resulting edge labels are distinct. A graph which admits a graceful labeling is called a graceful graph. The popular and notorious Graceful Tree Conjecture: "All trees are graceful", remains unsettled over four decades inspite of many rigorous attempts and investigations. Inspired by the interesting result of Acharya et al [1], in this paper we show that every tree can be embedded in a graceful tree. Practically, we observe that any tree with m edges can be embedded in a graceful tree with less than 2m edges and we discuss a related open problem towards settling the Graceful Tree Conjecture through the embedding approach.

Keywords: Graceful Tree, Graceful Tree Conjecture, Graceful Tree Embedding, Graceful Labeling, Graph Labeling.

¹ Email: sethu@annauniv.edu

² Email: ragukumar2003@gmail.com

1 Introduction

All the graphs considered in this paper are finite and simple graphs. The terms which are not defined here can be refered from [7]. In 1963, Ringel posed his celebrated conjecture, popularly called Ringel Conjecture [6], which states that, K_{2n+1} , the complete graph on 2n+1 vertices can be decomposed into 2n+1 isomorphic copies of a given tree with n edges. For an exhaustive survey on graceful trees refer the dynamic survey by Gallian [2]. Inspired by the interesting result of Acharya et al [1], in this paper we show that every tree can be embedded in a graceful tree. Practically, we observe that any tree with m edges can be embedded in a graceful tree with less than 2m edges and we discuss a related open problem towards settling the Graceful Tree Conjecture through the embedding approach.

2 Main Result

In this section, we show that every tree can be embedded in a graceful tree through Graceful Tree Embedding Algorithm. Graceful Tree Embedding Algorithm takes arbitrary tree T as its input and it runs Labeling Algorithm on the tree T, obtains its output T' and then it extends T' to a gracefl tree T^* . First we present Bipartition Algorithm that defines a bipartition of vertex set of given arbitrary input tree T, then this bipartition of vertices of T will be used in Labeling Algorithm.

Bipartition Algorithm

Input: Any arbitrary tree T with m edges and diameter d

Step 1:

Identify a longest path P of length d of T.

Step 1.1:

Arrange the vertices of the longest path P of T from left to right and label them u_0, u_1, \dots, u_d .

Step 2:

For each branch that comes out from the vertex u_i of the longest path P, for $i, 0 \le i \le d$, visit the vertices of the branch at the vertex u_i in pre-order traversal by considering the branch at the vertex u_i as a rooted tree with u_i as its root. Denote the vertices of the branch at u_i that are visited in the pre-order traversal by $u_{i,1}, u_{i,2}, \dots, u_{i,t_i}$, where t_i is the number of vertices in the branch at the vertex u_i , for $0 \le i \le d$.

Download English Version:

https://daneshyari.com/en/article/4651715

Download Persian Version:

https://daneshyari.com/article/4651715

Daneshyari.com