

Available online at www.sciencedirect.com

ScienceDirect

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 48 (2015) 143–150 www.elsevier.com/locate/endm

Gracefully Cultivating Trees on a Cycle

Ramon M. Figueroa-Centeno ¹

Mathematics Department, University of Hawaii at Hilo, 200 W. Kawili St. Hilo, HI 96720, USA.

Rikio Ichishima²

College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajosui Setagaya-ku, Tokyo 156-8550, Japan.

Francesc A. Muntaner-Batle³

Graph Theory and Applications Research Group, School of Electrical Engineering and Computer Science, Faculty of Engineering and Built Environment,

The University of Newcastle, NSW 2308, Australia.

Akito Oshima⁴

Graph Theory and Applications Research Group, School of Electrical Engineering and Computer Science, Faculty of Engineering and Built Environment,

The University of Newcastle, NSW 2308, Australia.

Abstract

A graph G of size q is graceful if there exists an injective function $f:V(G) \to \{0,1,\ldots,q\}$ such that each $uv \in E(G)$ is labeled |f(u)-f(v)| and the resulting edge labels are distinct. Truszczyński conjectured that all unicyclic graphs except the cycle C_n , where $n \equiv 1$ or $2 \pmod{4}$, are graceful. In this paper, we present two

methods to construct certain graceful unicyclic graphs when the length of cycles are congruent to 0 or 3 (mod 4).

Keywords: graceful labellings, unicyclic graphs, Truszczyński's conjecture

1 Introduction

We start by referring the reader to Chartrand and Lesniak [3] for all the definitions and notations not provided in this paper. The graphs we consider are finite and simple, that is, there are no loops and multiple edges.

A graph G of size q is called graceful if there exists an injective function $f:V(G)\to\{0,1,\ldots,q\}$ such that each $uv\in E(G)$ is labeled |f(u)-f(v)| and the resulting edge labels are distinct. Such a function is called a graceful labeling. A graceful labeling f is called an α -valuation if there exists an integer λ (called the $critical\ value$) so that $\min\{f(u),f(v)\} \leq \lambda < \max\{f(u),f(v)\}$ for each $uv\in E(G)$.

The investigation of graceful labelings of cycle-related graphs have been a major focus of attention for many years. Rosa first showed in [9] that the cycle C_n is graceful if and only if $n \equiv 0$ or 3 (mod 4). Afterwards, Truszczyński [11] investigated the graceful properties of unicyclic graphs and proved that several classes of such graphs possess graceful labelings. In his work, Truszczyński conjectured that all unicyclic graphs except C_n , where $n \equiv 1$ or 2 (mod 4), are graceful.

Several researchers have considered the gracefulness of a particular class of unicyclic graphs. The interested reader is now directed to the surveys of graph labelings by Gallian [6] for other results, which partially resolve the aforementioned conjecture of Truszczyński.

For any integer $n \geq 3$, given a cycle C_n and a family of trees $\mathfrak{T} = \{T_1, T_2, \ldots, T_n\}$, let u_i and v_i , $1 \leq i \leq n$, be the fixed vertices of C_n and T_i , respectively. Then the unicyclic graph, $\operatorname{Amal}(C_n, \mathfrak{T})$, can be obtained from C_n and \mathfrak{T} by amalgamating C_n and T_i at the vertices u_i and v_i , $1 \leq i \leq n$. In this paper, we present two construction methods that generate a graceful labeling of the unicyclic graph $\operatorname{Amal}(C_n, \mathfrak{T})$ from a cycle C_n and a family of trees \mathfrak{T} with α -valuations when $n \equiv 0$ or $3 \pmod{4}$.

¹ Email: ramonf@hawaii.edu

² Email: ichishima@chs.nihon-u.ac.jp

³ Email: fambles@yahoo.es

Email: akitoism@yahoo.co.jp

Download English Version:

https://daneshyari.com/en/article/4651724

Download Persian Version:

https://daneshyari.com/article/4651724

<u>Daneshyari.com</u>