

Available online at www.sciencedirect.com

ScienceDirect

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 48 (2015) 151–156 www.elsevier.com/locate/endm

Graceful digraphs and complete mappings

S.M. Hegde ¹

Department of Mathematics and Computational Sciences National Institute of Technology Karnataka, surathkal Srinivasnagar-575025 Mangalore, India

Kumudakshi²

Department of Mathematics
NMAM Institute of Technology
Nitte-574110 udupi Dist.Karnataka, India
Department of Mathematics and Computational Sciences
National Institute of Technology Karnataka, surathkal
Srinivasnagar-575025 Mangalore, India

Abstract

Bloom and Hsu while extending the graceful labelings of graphs to digraphs, specified the relation between graceful unicycles and complete mappings by establishing the relation of each to a particular class of permutations. We denote $\vec{C_m}(r;m)$ as a digraph with two directed cycles, one with vertices $v_1, v_2, ..., v_{r-1}, v_r, v_{r+1}, ..., v_m$ and another directed cycle with vertices $v_1, v_2^1, ..., v_{r-1}^1, v_r, v_{r+1}^1, ..., v_m^1$ of same length, such that both the directed cycles have v_1 and v_r as the two common vertices (where $m \geq 4, 3 \leq r \leq m-1$). In this paper we use complete mappings to deduce a partition of Z_n , where n=2m+1 odd and show that the digraph $\vec{C_m}(r;m)$ is graceful.

Keywords: Graceful digraphs, complete mappings, partitions of Z_n .

1 Introduction

For standard notations and terminologies in graph theory we follow Chartrand and Lesniak [2].

The concept of graceful labeling was introduced by Rosa [9] in the year 1967.

Definition 1.1 An undirected graph with e edges is gracefully labeled if each vertex v is assigned a distinct value f(v) from $\{0, 1, ..., e\}$ in such a way that the set of edge labels equals $\{1, 2, ..., e\}$ when edge uv is labeled by f(u, v) = |f(u) - f(v)|. A graph is said to be graceful (undirected) graph if it can be gracefully labeled.

This concept was extended to digraphs by Bloom and Hsu in [1].

Definition 1.2 A digraph D with p vertices and q arcs is labeled by assigning a distinct integer value g(v) from $\{0, 1, 2, ..., q\}$ to each vertex v. The vertex values, in turn, induce a value g(u, v) on each arc (u, v) where $g(u, v) = (g(v) - g(u)) \pmod{q+1}$. If the arc values are all distinct, then the labeling is called a graceful labeling of the digraph D.

The following are from [6].

Theorem 1.3 Let D be a graceful digraph with p vertices and q arcs. Suppose the directed cycle $\vec{C_m}$ is contained in the digraph D. Then the sum of the labels on the arcs of $\vec{C_m}$ is congruent to zero(mod q+1).

Theorem 1.4 The directed cycle $\vec{C_m}$ is graceful iff the sum of the elements 1, 2, ..., m is congruent to $zero(mod \ m+1)$ and there exists an arrangement of these elements in a circular way, with the sum of n(n < m) consecutive elements not congruent to $zero(mod \ m+1)$.

One can see a detailed study of graph labeling problems given by Gallian in his survey paper [4].

We denote a digraph as $\vec{C_m}(r;m)$, if it consists two directed cycles each of length m, one with vertices $v_1, v_2, ..., v_{r-1}, v_r, v_{r+1}, ..., v_m$ and the other directed cycle with vertices $v_1, v_2^1, ..., v_{r-1}^1, v_r, v_{r+1}^1, ..., v_m^1$ such that both the directed cycles have v_1 and v_r as the two common vertices, where $m \geq 4, 3 \leq r \leq m-1$.

Here $\vec{C}_m(r;m)$ is viewed as a digraph having two directed cycles each of length m and with two common vertices.

¹ Email: smhegde@nitk.ac.in

² Email: skumudakshi@yahoo.com

Download English Version:

https://daneshyari.com/en/article/4651725

Download Persian Version:

https://daneshyari.com/article/4651725

<u>Daneshyari.com</u>