

Available online at www.sciencedirect.com

ScienceDirect

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 49 (2015) 3–10

www.elsevier.com/locate/endm

The Bruhat order on conjugation-invariant sets of involutions in the symmetric group

Mikael Hansson ¹

Department of Mathematics Linköping University Linköping, Sweden

Abstract

Let I_n be the set of involutions in the symmetric group S_n , and for $A \subseteq \{0, 1, \dots, n\}$, let

$$F_n^A = \{ \sigma \in I_n \mid \sigma \text{ has } a \text{ fixed points for some } a \in A \}.$$

We give a complete characterisation of the sets A for which F_n^A , with the order induced by the Bruhat order on S_n , is a graded poset. In particular, we prove that $F_n^{\{1\}}$ (i.e., the set of involutions with exactly one fixed point) is graded, which settles a conjecture of Hultman in the affirmative. When F_n^A is graded, we give its rank function. We also give a short new proof of the EL-shellability of $F_n^{\{0\}}$ (i.e., the set of fixed point-free involutions), which was recently proved by Can, Cherniavsky, and Twelbeck.

Keywords: Bruhat order, symmetric group, involution, conjugacy class, graded poset, EL-shellability

¹ Email: mikael.hansson@liu.se

1 Introduction

Partially ordered by the Bruhat order, the symmetric group S_n is a graded poset whose rank function is given by the number of inversions, and Edelman [4] proved that it is EL-shellable. Richardson and Springer [10] proved that the set I_n of involutions in S_n and the set F_n^0 of fixed point-free involutions are graded. Incitti [9] proved that the rank function of I_n can be expressed as the average of the number of inversions and the number of exceedances, and that I_n is EL-shellable. Hultman [8] studied (in a more general setting, which we shall describe shortly) F_n^0 and F_n^1 , the set of involutions with exactly one fixed point. It follows that F_n^0 is graded and Hultman conjectured that the same is true for F_n^1 . Can, Cherniavsky, and Twelbeck [3] recently proved that F_n^0 is EL-shellable.

We consider the following generalisation. For $a \in \{0, 1, ..., n\}$, let F_n^a be the conjugacy class in S_n consisting of the involutions with a fixed points, and for $A \subseteq \{0, 1, ..., n\}$, let

$$F_n^A = \bigcup_{a \in A} F_n^a$$
.

Both I_n and F_n^A are regarded as posets with the order induced by the Bruhat order on S_n . Note that

$$F_n^A = \{ \sigma \in I_n \mid \sigma \text{ has } a \text{ fixed points for some } a \in A \}.$$

Also note that for all elements in I_n , the number of fixed points is congruent to n modulo 2. Hence, we may assume that all members of A have the same parity as n.

Depicted in Figures 1 and 2, are the Hasse diagrams of I_4 , F_4^0 , and F_4^2 .

Our main result is a complete characterisation of the sets A for which F_n^A is graded. In particular, we prove that F_n^1 is graded.

Informally, F_n^A is graded precisely when $A - \{n\}$ is empty or an "interval," which may consist of a single element if it is 0, 1, or n-2. The following theorem, which is our main result, makes the above precise. It also gives the rank function of F_n^A when it exists.

Theorem 1 The poset F_n^A is graded if and only if $A - \{n\} = \emptyset$ or $A - \{n\} = \{a_1, a_1 + 2, ..., a_2\}$ with $a_1 \in \{0, 1\}$, $a_2 = n - 2$, or $a_2 - a_1 \ge 2$. Furthermore, when F_n^A is graded, its rank function ρ is given by

$$\rho(\sigma) = \frac{\operatorname{inv}(\sigma) + \operatorname{exc}(\sigma) - n + \tilde{a}}{2} + \begin{cases} 1 & \text{if } n \in A \\ 0 & \text{otherwise,} \end{cases}$$

Download English Version:

https://daneshyari.com/en/article/4651872

Download Persian Version:

https://daneshyari.com/article/4651872

Daneshyari.com