

Available online at www.sciencedirect.com

ScienceDirect

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 49 (2015) 221–231 www.elsevier.com/locate/endm

On the zone of a circle in an arrangement of lines

Gabriel Nivasch ¹

Department of Computer Science and Mathematics, Ariel University, Ariel, Israel

Abstract

Let \mathcal{L} be a set of n lines in the plane, and let C be a convex curve in the plane, like a circle or a parabola. The zone of C in \mathcal{L} , denoted $\mathcal{Z}(C,\mathcal{L})$, is defined as the set of all faces in the arrangement $\mathcal{A}(\mathcal{L})$ that are intersected by C. Edelsbrunner et al. (1992) showed that the complexity (total number of edges or vertices) of $\mathcal{Z}(C,\mathcal{L})$ is at most $O(n\alpha(n))$, where α is the inverse Ackermann function, by translating the sequence of edges of $\mathcal{Z}(C,\mathcal{L})$ into a sequence S that avoids the subsequence ababa. Whether the worst-case complexity of $\mathcal{Z}(C,\mathcal{L})$ is only linear is a longstanding open problem.

In this paper we provide evidence that, if C is a circle or a parabola, then the zone of C has at most linear complexity: We show that a certain configuration of segments with endpoints on C is impossible. As a consequence, the Hart-Sharir sequences, which are essentially the only known way to construct ababa-free sequences of superlinear length, cannot occur in S.

Hence, if it could be shown that every family of superlinear-length, ababa-free sequences must eventually contain all Hart-Sharir sequences, that would settle the zone problem for a circle/parabola.

Keywords: arrangement, zone, Davenport-Schinzel sequence, inverse Ackermann function

Email: gabrieln@ariel.ac.il

1 Introduction

Let \mathcal{L} be a set of n lines in the plane. The arrangement of \mathcal{L} , denoted $\mathcal{A}(\mathcal{L})$, is the partition of the plane into vertices, edges, and faces induced by \mathcal{L} . Let C be another object in the plane. The zone of C in \mathcal{L} , denoted $\mathcal{Z}(C,\mathcal{L})$, is defined as the set of all faces in $\mathcal{A}(\mathcal{L})$ that are intersected by C. The complexity of $\mathcal{Z}(C,\mathcal{L})$ is defined as the total number of edges, or vertices, in it.

The celebrated zone theorem states that, if C is another line, then $\mathcal{Z}(C,\mathcal{L})$ has complexity O(n) (Chazelle et al. [3]; see also Edelsbrunner et al. [5], Matoušek [12]).

If C is a convex curve, like a circle or a parabola, then $\mathcal{Z}(C,\mathcal{L})$ is known to have complexity $O(n\alpha(n))$, where α is the very-slow-growing inverse Ackermann function (Edelsbrunner et al. [5]; see also Bern et al. [2], Sharir and Agarwal [21]). More specifically, the *outer zone* of $\mathcal{Z}(C,\mathcal{L})$ (the part that lies outside the convex hull of C) is known to have complexity O(n), whereas the complexity of the *inner zone* is only known to be $O(n\alpha(n))$. Whether the complexity of the inner zone is linear as well is a longstanding open problem [2,21].

In this paper we make progress towards proving that the inner zone of a circle, or a parabola, in an arrangement of lines has linear complexity. The problem is more naturally formulated with a circle, but a parabola is easier to work with. Therefore, throughout most of this paper we will take for concreteness C to be the parabola $y = x^2$. In the full version of this paper we show how to modify our argument for the case of a circle.

1.1 Davenport-Schinzel sequences and their generalizations

Let S be a finite sequence of symbols, and let $s \ge 1$ be a parameter. Then S is called a Davenport-Schinzel sequence of order s if every two adjacent symbols in S are distinct, and if S does not contain any alternation $a \cdots b \cdots a \cdots b \cdots$ of length s+2 for two distinct symbols $a \ne b$. Hence, for s=1 the "forbidden pattern" is aba, for s=2 it is abab, for s=3 it is ababa, and so on.

The maximum length of a Davenport–Schinzel sequence of order s that contains only n distinct symbols is denoted $\lambda_s(n)$. For $s \leq 2$ we have $\lambda_1(n) = n$ and $\lambda_2(n) = 2n - 1$. However, for fixed $s \geq 3$, $\lambda_s(n)$ is slightly superlinear in n.

The case s=3 is the one most relevant to us. Hart and Sharir [7] constructed a family of sequences that achieve the lower bound 2 $\lambda_3(n) \ge$

 $[\]overline{^2 \text{ See } [13]}$ on how to avoid losing a factor of 2 in the interpolation step.

Download English Version:

https://daneshyari.com/en/article/4651902

Download Persian Version:

https://daneshyari.com/article/4651902

<u>Daneshyari.com</u>