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Abstract
Minimum Bisection denotes the NP-hard problem to partition the vertex set of a
graph into two sets of equal sizes while minimizing the number of edges between
these two sets. We consider this problem in bounded degree graphs with a given
tree decomposition (T, X ) and prove an upper bound for their minimum bisection
width in terms of the structure and width of (T, X ). When (T, X ) is provided as
input, a bisection satisfying our bound can be computed in time proportional to the
encoding length of (T, X ). Furthermore, our result can be generalized to k-section,
which is known to be APX-hard even when restricted to trees with bounded degree.
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1 Introduction and Results

Let us first fix some basic terminology. A cut (V1, V2, . . . , Vk) in a graph G
is a partition of its vertex set. An edge {x, y} of G is cut by (V1, V2, . . . , Vk)
if x and y belong to different sets Vi and Vj. The number of edges cut by
(V1, V2, . . . , Vk) is called the width of the cut and is denoted by e(V1, V2, . . . , Vk).
A k-section is a cut (V1, V2, . . . , Vk) such that the sizes of Vi and Vj differ by at
most one for all i, j ∈ [k], where [k] := {1, 2, . . . , k}. The Minimum k-Section
Problem asks to find a minimum k-section (V1, V2, . . . , Vk) in a graph G, i.e., a
k-section of minimum width among all k-sections in G, and MinSec(k, G) is
defined to be the width of (V1, V2, . . . , Vk). The special case k = 2 is also called
the Minimum Bisection Problem. In what follows, unless stated otherwise, n
and Δ(G) denote the number of vertices and the maximum degree of the
considered graph G, respectively.

1.1 Minimum Bisection

Finding a minimum bisection is a famous NP-hard optimization problem [6].
Jansen et al. showed that dynamic programming gives an exact algorithm
with running time O(2tn3) when a tree decomposition of width t is provided
as input [7]. Thus, the problem becomes polynomially tractable for graphs of
bounded tree width. For general graphs, the best known approximation algo-
rithm achieves an approximation ratio of O(log n) [9]. Further, the Minimum
Bisection Problem restricted to 3-regular graphs is as hard to approximate
as its general version [2]. Here, we focus on upper bounds for the minimum
bisection width in bounded degree graphs with a given tree decomposition
of small width. Lower bounds are more difficult to derive and only few are
known. One example is the spectral bound MinSec(2, G) ≥ 1

4λ2n, where λ2
denotes the second eigenvalue of the Laplacian of G [8].

In [4], we have shown that for every tree T

MinSec(2, T ) ≤ 8Δ(T )
diam∗(T ) , (1)

where diam∗(T ) := (diam(T ) + 1)/n denotes the relative diameter of the
tree T , i.e., the fraction of vertices of T on a longest path in T . This implies
that every tree with linear diameter and bounded maximum degree allows a
bisection of constant width. In general, every tree with bounded degree allows
a bisection of width O(log2 n) and the perfect ternary tree shows that this is
tight up to a constant factor.
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