

Available online at www.sciencedirect.com

ScienceDirect

Electronic Notes in DISCRETE **MATHEMATICS**

Electronic Notes in Discrete Mathematics 49 (2015) 481–488 www.elsevier.com/locate/endm

On Minimum Bisection and Related Partition Problems in Graphs with Bounded Tree Width

Cristina G. Fernandes a,1,3, Tina Janne Schmidt b,2,4, and Anusch Taraz b,4

a Instituto de Matemática e Estatística, Universidade de São Paulo, 05508-090 São Paulo, Brazil

^b Institut für Mathematik (E-10), Technische Universität Hamburg-Harburg, 21073 Hambura, Germanu

Abstract

Minimum Bisection denotes the NP-hard problem to partition the vertex set of a graph into two sets of equal sizes while minimizing the number of edges between these two sets. We consider this problem in bounded degree graphs with a given tree decomposition (T,\mathcal{X}) and prove an upper bound for their minimum bisection width in terms of the structure and width of (T, \mathcal{X}) . When (T, \mathcal{X}) is provided as input, a bisection satisfying our bound can be computed in time proportional to the encoding length of (T, \mathcal{X}) . Furthermore, our result can be generalized to k-section, which is known to be APX-hard even when restricted to trees with bounded degree.

Keywords: Minimum Bisection, Minimum k-Section, tree decomposition.

¹ Partially supported by CNPq, FAPESP, and Project MaCLinC of NUMEC/USP.

² Supported by the Evangelische Studienwerk Villigst e.V.

The cooperation of the three authors was supported by PROBRAL CAPES/DAAD Proc. 430/15 (February 2015 to December 2016, DAAD Projekt-ID 57143515).

³ Email: cris@ime.usp.br

⁴ Email: {tina.janne.schmidt, taraz}@tuhh.de

1 Introduction and Results

Let us first fix some basic terminology. A $cut\ (V_1,V_2,\ldots,V_k)$ in a graph G is a partition of its vertex set. An edge $\{x,y\}$ of G is cut by (V_1,V_2,\ldots,V_k) if x and y belong to different sets V_i and V_j . The number of edges cut by (V_1,V_2,\ldots,V_k) is called the width of the cut and is denoted by $e(V_1,V_2,\ldots,V_k)$. A k-section is a cut (V_1,V_2,\ldots,V_k) such that the sizes of V_i and V_j differ by at most one for all $i,j\in[k]$, where $[k]:=\{1,2,\ldots,k\}$. The $Minimum\ k$ -Section Problem asks to find a $minimum\ k$ -section (V_1,V_2,\ldots,V_k) in a graph G, i.e., a k-section of minimum width among all k-sections in G, and MinSec(k,G) is defined to be the width of (V_1,V_2,\ldots,V_k) . The special case k=2 is also called the $Minimum\ Bisection\ Problem$. In what follows, unless stated otherwise, n and $\Delta(G)$ denote the number of vertices and the maximum degree of the considered graph G, respectively.

1.1 Minimum Bisection

Finding a minimum bisection is a famous NP-hard optimization problem [6]. Jansen et al. showed that dynamic programming gives an exact algorithm with running time $\mathcal{O}(2^tn^3)$ when a tree decomposition of width t is provided as input [7]. Thus, the problem becomes polynomially tractable for graphs of bounded tree width. For general graphs, the best known approximation algorithm achieves an approximation ratio of $\mathcal{O}(\log n)$ [9]. Further, the Minimum Bisection Problem restricted to 3-regular graphs is as hard to approximate as its general version [2]. Here, we focus on upper bounds for the minimum bisection width in bounded degree graphs with a given tree decomposition of small width. Lower bounds are more difficult to derive and only few are known. One example is the spectral bound MinSec $(2, G) \geq \frac{1}{4}\lambda_2 n$, where λ_2 denotes the second eigenvalue of the Laplacian of G [8].

In [4], we have shown that for every tree T

$$\operatorname{MinSec}(2,T) \leq \frac{8\Delta(T)}{\operatorname{diam}^*(T)},$$
 (1)

where $\operatorname{diam}^*(T) := (\operatorname{diam}(T) + 1)/n$ denotes the relative diameter of the tree T, i.e., the fraction of vertices of T on a longest path in T. This implies that every tree with linear diameter and bounded maximum degree allows a bisection of constant width. In general, every tree with bounded degree allows a bisection of width $\mathcal{O}(\log_2 n)$ and the perfect ternary tree shows that this is tight up to a constant factor.

Download English Version:

https://daneshyari.com/en/article/4651936

Download Persian Version:

https://daneshyari.com/article/4651936

<u>Daneshyari.com</u>