Equitable colorings of non-uniform simple hypergraphs

Irina Shirgazina ${ }^{1,2}$
Department of Probability Theory, Faculty of Mechanics and Mathematics Lomonosov Moscow State University Moscow, Russia

Abstract

The paper is devoted to the combinatorial problem concerning equitable colorings of non-uniform simple hypergraphs. Let $H=(V, E)$ be a hypergraph, a coloring with r colors of its vertex set V is called equitable if it is proper (i.e. none of the edges is monochromatic) and the cardinalities of the color classes differ by at most one. We show that if H is a simple hypergraph with minimum edge-cardinality n and

$$
\sum_{e \in E} r^{1-|e|} \leqslant c \sqrt{n}
$$

for some absolute constant $c>0$, then H has an equitable r-coloring.
Keywords: Hypergraphs, colourings, Property B.

[^0]
1 Introduction

The paper deals with some aspects of the well-known problem of Erdős and Lovász concerning colorings of non-uniform hypergraphs.

Let us begin our review with well-known extremal problems concerning colorings of hypergraphs is the classical Property B problem stated by P. Erdős and A. Hajnal. The problem is to find the value $m(k)$ equal to the minimum possible number of edges in a k-uniform hypergraph which is not 2-colorable (see the survey [1] for the details). We shall recall a fragment from its history.

In 1973 Erdős and L. Lovász in their seminal paper [2] conjectured that

$$
\frac{m(k)}{2^{k}} \rightarrow \infty \quad \text { ask } \rightarrow \infty
$$

Furthermore, they formulated a stronger conjecture concerning non-uniform hypergraphs. For a hypergraph $H=(V, E)$, let $f(H)$ denote the function

$$
f(H)=\sum_{e \in E} 2^{-|e|} .
$$

Erdős and Lovász proposed to consider the value $f(k)$ equal to the minimum possible value of $f(H)$ where H is 3-chromatic hypergraph with minimum edge-cardinality k. They conjectured that

$$
f(k) \rightarrow \infty \quad \text { ask } \rightarrow \infty
$$

Both conjectures were proved by J. Beck in 1977-78. He proved that $m(k) \geqslant$ $2^{k} k^{1 / 3-o(1)}$, but his lower bound for $f(k)$ was much weaker. Using the function $\log ^{*}(x)$ Beck's result (see [3]) can be formulated as follows:

$$
\begin{equation*}
f(k) \geqslant \frac{\log ^{*}(k)-100}{7} \tag{1}
\end{equation*}
$$

where $\log ^{*}(k)$ is the inverse function for the tower of twos of height k. Thus this inequality proves the conjecture of Erdős and Lovász, but grows very slowly. In [4] D. Shabanov improved Beck's condition (which guarantees r-colorability in terms of $f(H)$) for simple triangle-free hypergraphs. He showed that if $H=(V, E)$ is triangle-free simple hypergraph with minimum edge-cardinality k and

$$
\begin{equation*}
f_{r}(H)=\sum_{e \in E} r^{1-|e|} \leqslant \frac{1}{2}\left(\frac{k}{\ln k}\right)^{2 / 3}, \tag{2}
\end{equation*}
$$

https://daneshyari.com/en/article/4651963

Download Persian Version:

https://daneshyari.com/article/4651963

Daneshyari.com

[^0]: 1 This work was supported by Russian Foundation of Fundamental Research (grant 15-01-03530-) and by the grant of the President of Russian Federation MK-692.2014.1
 ${ }^{2}$ Email: ishirgazina@yandex.ru

