

Contents lists available at ScienceDirect

## **European Journal of Combinatorics**

journal homepage: www.elsevier.com/locate/ejc



# Separating *n*-point sets from quasi-finite ones via polyhedral surfaces



Hiroshi Maehara a, Horst Martini b

#### ARTICLE INFO

Article history: Received 27 February 2016 Accepted 7 October 2016

#### ABSTRACT

Let X be an infinite set in  $\mathbb{R}^d$  that has no accumulation point. We prove that the following statement holds for each d-dimensional polyhedron  $\Pi$ , i.e., for each bounded part of  $\mathbb{R}^d$  generated by a closed polyhedral surface: for any positive integer n, there is a polyhedron similar to  $\Pi$  that contains exactly n points taken from X.

© 2016 Elsevier Ltd. All rights reserved.

#### 1. Introduction

H. Steinhaus proved that for every natural number n, there is a circle in the plane which contains in its interior exactly n lattice points; see H. Steinhaus [8, problem 24] and R. Honsberger [1, p. 118]. (A lattice point is a point all whose coordinates are integers.) This result is extended in [2] as follows: for any bounded convex domain W in the plane and for any n > 0, there is a set similar to W that contains exactly n lattice points. In [3] it is proved that for every (convex or concave) polygon P in the plane, there is a polygon similar to P that contains a given number of lattice points.

A. Schinzel [7] proved that for every natural number n > 0, there is a circle in the plane that passes through exactly n lattice points; see also [5]. Similar problems are considered for quadratic curves in [2]. There the authors proved that, e.g., for each  $0 \le n < 5$  there is a parabola passing through exactly n lattice points, but if a parabola passes through five lattice points, then it passes through infinitely many lattice points.

P. Zwolenski [9] considered such Steinhaus-type problems in a more general setting. In a metric space M, a countable subset  $X \subset M$  is called *quasi-finite* if every ball in M contains only finitely many

<sup>&</sup>lt;sup>a</sup> Ryukyu University, Nishihara, Okinawa 903-0213, Japan

<sup>&</sup>lt;sup>b</sup> Faculty of Mathematics, Chemnitz University of Technology, 09107 Chemnitz, Germany

points of X. P. Zwolenski proved the following for quasi-finite sets in Hilbert spaces: if X is such a set, then there is a dense set Y in this Hilbert space such that for every  $y \in Y$  and every integer n > 0 there is a ball with center y that contains exactly n points of X.

We consider here the problem of separating a subset of given cardinality from a quasi-finite set in  $\mathbb{R}^d$  by a polyhedron. A quasi-finite set in  $\mathbb{R}^d$  is also characterized as an infinite subset of  $\mathbb{R}^d$  that has no accumulation point. By a *closed polyhedral surface* in  $\mathbb{R}^d$ , we mean a (d-1)-dimensional closed manifold in  $\mathbb{R}^d$  that is contained in a union of a finitely many hyperplanes in  $\mathbb{R}^d$ . By the Jordan–Brouwer separation theorem (see, e.g., [6]), a closed polyhedral surface in  $\mathbb{R}^d$  divides  $\mathbb{R}^d$  into two components, one bounded and the other one unbounded. The closure of such a bounded component is called a d-dimensional Jordan–Brouwer polyhedron or, shortly, a *polyhedron*. For a polyhedron  $\Pi$ , the closed polyhedral surface that bounds  $\Pi$  is denoted by  $\partial \Pi$ .

**Theorem 1.** Let X be a quasi-finite set in  $\mathbb{R}^d$ , and  $\Pi$  be a polyhedron in  $\mathbb{R}^d$ . For any integer n > 0, there is a polyhedron similar to  $\Pi$  that contains exactly n points of X.

The proof is accomplished by showing that there is a continuous deformation  $\mathcal{H}(s)$ ,  $0 \le s \le 1$ , of a polyhedron such that

- (a) for every  $s \in [0, 1]$ ,  $\mathcal{H}(s)$  is a polyhedron that is similar to  $\Pi$ ,
- (b)  $|\mathcal{H}(0) \cap X| \leq n-1$  and  $|\mathcal{H}(1) \cap X| \geq n+1$ , and
- (c) for every  $s \in [0, 1], |\partial \mathcal{H}(s) \cap X| \leq 1$ .

Condition (c) implies that, when s increases from 0 to 1,  $|\mathcal{H}(s) \cap X|$  changes one by one, and hence, by condition (b), there must be an  $s_0 \in [0, 1]$  such that  $|\mathcal{H}(s_0) \cap X| = n$ .

The set of all lattice points in  $\mathbb{R}^d$  is clearly a quasi-finite set. Hence we have the following result from [4] as a corollary of Theorem 1.

**Corollary 1.** For any polyhedron  $\Pi$  in  $\mathbb{R}^d$  and any integer n > 0, there is a polyhedron that is similar to  $\Pi$  and contains exactly n lattice points.

For a polyhedron  $\Pi$  and a real number  $\lambda > 0$ , the set  $\lambda \Pi$  denotes the homothet of  $\Pi$  with ratio  $\lambda$ .

**Remark 1.** If we replace "a polyhedron similar to  $\Pi$ " by "a homothet  $\lambda\Pi$ " in Theorem 1, then it is no longer true. To see this, consider the case that X is the set of all lattice points in  $\mathbb{R}^2$ , and  $\Pi$  is a square whose edges are parallel to the coordinate-axes. Then, every homothet  $\lambda\Pi$  of  $\Pi$  is also a square with edges parallel to the coordinate-axes, and hence the number of lattice points in  $\lambda\Pi$  is either  $m\times m$  or  $(m-1)\times m$  or  $(m-1)\times (m-1)$  for some integer m>0. Since none of these numbers is equal to, e.g., an odd prime p, there is no  $\lambda\Pi$  that contains exactly p lattice points.

**Theorem 2.** Let Y be a finite point set in  $\mathbb{R}^d$  and  $\Pi$  be a polyhedron. If N points of Y lie in the interior of  $\Pi$ , then, for every 0 < n < N, there is a polyhedron congruent to  $\lambda\Pi$  for some  $0 < \lambda < 1$  that contains exactly n points of Y.

**Remark 2.** If we drop the condition  $0 < \lambda < 1$  in this theorem, then the assertion would follow easily from the fact that there is a hyperplane that separates n points of Y.

#### 2. Notation and two lemmas

Throughout this paper, X denotes a quasi-finite set in  $\mathbb{R}^d$ . As already introduced,  $\Pi$  denotes a (d-dimensional) polyhedron in  $\mathbb{R}^d$ , and  $\Sigma = \partial \Pi$  is the closed polyhedral surface that bounds  $\Pi$ . We may suppose that the origin O is an interior point of  $\Pi$ , and that  $O \not\in X$ . We use the following notations: For  $A \subset \mathbb{R}^d$ ,  $v \in \mathbb{R}^d$ , and t > 0,

```
v + A = \{v + x : x \in A\} (the translate of A by v),

tA = \{tx : x \in A\} (the homothetic copy of A with ratio t),

A^* = \{-x : x \in A\} (the set symmetric to A with respect to O).
```

### Download English Version:

# https://daneshyari.com/en/article/4653173

Download Persian Version:

https://daneshyari.com/article/4653173

<u>Daneshyari.com</u>