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a b s t r a c t

Let X be an infinite set in Rd that has no accumulation point. We
prove that the following statement holds for each d-dimensional
polyhedron Π , i.e., for each bounded part of Rd generated by a
closed polyhedral surface: for any positive integer n, there is a
polyhedron similar to Π that contains exactly n points taken from
X .

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

H. Steinhaus proved that for every natural number n, there is a circle in the plane which contains
in its interior exactly n lattice points; see H. Steinhaus [8, problem 24] and R. Honsberger [1, p. 118].
(A lattice point is a point all whose coordinates are integers.) This result is extended in [2] as follows:
for any bounded convex domain W in the plane and for any n > 0, there is a set similar to W that
contains exactly n lattice points. In [3] it is proved that for every (convex or concave) polygon P in the
plane, there is a polygon similar to P that contains a given number of lattice points.

A. Schinzel [7] proved that for every natural number n > 0, there is a circle in the plane that passes
through exactly n lattice points; see also [5]. Similar problems are considered for quadratic curves
in [2]. There the authors proved that, e.g., for each 0 ≤ n < 5 there is a parabola passing through
exactly n lattice points, but if a parabola passes through five lattice points, then it passes through
infinitely many lattice points.

P. Zwolenski [9] considered such Steinhaus-type problems in a more general setting. In a metric
spaceM , a countable subset X ⊂ M is called quasi-finite if every ball inM contains only finitely many
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points of X . P. Zwolenski proved the following for quasi-finite sets in Hilbert spaces: if X is such a set,
then there is a dense set Y in this Hilbert space such that for every y ∈ Y and every integer n > 0
there is a ball with center y that contains exactly n points of X .

We consider here the problem of separating a subset of given cardinality from a quasi-finite set
in Rd by a polyhedron. A quasi-finite set in Rd is also characterized as an infinite subset of Rd that
has no accumulation point. By a closed polyhedral surface in Rd, wemean a (d−1)-dimensional closed
manifold inRd that is contained in a union of a finitelymanyhyperplanes inRd. By the Jordan–Brouwer
separation theorem (see, e.g., [6]), a closed polyhedral surface in Rd divides Rd into two components,
one bounded and the other one unbounded. The closure of such a bounded component is called a
d-dimensional Jordan–Brouwer polyhedron or, shortly, a polyhedron. For a polyhedron Π , the closed
polyhedral surface that bounds Π is denoted by ∂Π .

Theorem 1. Let X be a quasi-finite set in Rd, and Π be a polyhedron in Rd. For any integer n > 0, there
is a polyhedron similar to Π that contains exactly n points of X.

The proof is accomplished by showing that there is a continuous deformation H(s), 0 ≤ s ≤ 1, of
a polyhedron such that

(a) for every s ∈ [0, 1], H(s) is a polyhedron that is similar to Π ,
(b) |H(0) ∩ X | ≤ n − 1 and |H(1) ∩ X | ≥ n + 1, and
(c) for every s ∈ [0, 1], |∂H(s) ∩ X | ≤ 1.

Condition (c) implies that, when s increases from 0 to 1, |H(s) ∩ X | changes one by one, and hence,
by condition (b), there must be an s0 ∈ [0, 1] such that |H(s0) ∩ X | = n.

The set of all lattice points in Rd is clearly a quasi-finite set. Hence we have the following result
from [4] as a corollary of Theorem 1.

Corollary 1. For any polyhedron Π in Rd and any integer n > 0, there is a polyhedron that is similar to
Π and contains exactly n lattice points.

For a polyhedron Π and a real number λ > 0, the set λΠ denotes the homothet of Π with ratio λ.

Remark 1. If we replace ‘‘a polyhedron similar to Π ’’ by ‘‘a homothet λΠ ’’ in Theorem 1, then it is no
longer true. To see this, consider the case that X is the set of all lattice points in R2, and Π is a square
whose edges are parallel to the coordinate-axes. Then, every homothet λΠ of Π is also a square with
edges parallel to the coordinate-axes, and hence the number of lattice points in λΠ is either m × m
or (m − 1) × m or (m − 1) × (m − 1) for some integer m > 0. Since none of these numbers is equal
to, e.g., an odd prime p, there is no λΠ that contains exactly p lattice points.

Theorem 2. Let Y be a finite point set in Rd and Π be a polyhedron. If N points of Y lie in the interior of
Π , then, for every 0 < n < N, there is a polyhedron congruent to λΠ for some 0 < λ < 1 that contains
exactly n points of Y .

Remark 2. If we drop the condition 0 < λ < 1 in this theorem, then the assertionwould follow easily
from the fact that there is a hyperplane that separates n points of Y .

2. Notation and two lemmas

Throughout this paper, X denotes a quasi-finite set in Rd. As already introduced, Π denotes a
(d-dimensional) polyhedron in Rd, and Σ = ∂Π is the closed polyhedral surface that bounds Π .
We may suppose that the origin O is an interior point of Π , and that O ∉ X . We use the following
notations: For A ⊂ Rd, v ∈ Rd, and t > 0,

v + A = {v + x : x ∈ A} (the translate of A by v),

tA = {tx : x ∈ A} (the homothetic copy of A with ratio t),
A∗

= {−x : x ∈ A} (the set symmetric to A with respect to O).
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