Separating n-point sets from quasi-finite ones via polyhedral surfaces

Hiroshi Maehara ${ }^{\text {a }}$, Horst Martini ${ }^{\text {b }}$
${ }^{\text {a }}$ Ryukyu University, Nishihara, Okinawa 903-0213, Japan
${ }^{\mathrm{b}}$ Faculty of Mathematics, Chemnitz University of Technology, 09107 Chemnitz, Germany

ARTICLE INFO

Article history:

Received 27 February 2016
Accepted 7 October 2016

Abstract

Let X be an infinite set in \mathbb{R}^{d} that has no accumulation point. We prove that the following statement holds for each d-dimensional polyhedron Π, i.e., for each bounded part of \mathbb{R}^{d} generated by a closed polyhedral surface: for any positive integer n, there is a polyhedron similar to Π that contains exactly n points taken from X.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

H. Steinhaus proved that for every natural number n, there is a circle in the plane which contains in its interior exactly n lattice points; see H. Steinhaus [8, problem 24] and R. Honsberger [1, p. 118]. (A lattice point is a point all whose coordinates are integers.) This result is extended in [2] as follows: for any bounded convex domain W in the plane and for any $n>0$, there is a set similar to W that contains exactly n lattice points. In [3] it is proved that for every (convex or concave) polygon P in the plane, there is a polygon similar to P that contains a given number of lattice points.
A. Schinzel [7] proved that for every natural number $n>0$, there is a circle in the plane that passes through exactly n lattice points; see also [5]. Similar problems are considered for quadratic curves in [2]. There the authors proved that, e.g., for each $0 \leq n<5$ there is a parabola passing through exactly n lattice points, but if a parabola passes through five lattice points, then it passes through infinitely many lattice points.
P. Zwolenski [9] considered such Steinhaus-type problems in a more general setting. In a metric space M, a countable subset $X \subset M$ is called quasi-finite if every ball in M contains only finitely many

[^0]points of X. P. Zwolenski proved the following for quasi-finite sets in Hilbert spaces: if X is such a set, then there is a dense set Y in this Hilbert space such that for every $y \in Y$ and every integer $n>0$ there is a ball with center y that contains exactly n points of X.

We consider here the problem of separating a subset of given cardinality from a quasi-finite set in \mathbb{R}^{d} by a polyhedron. A quasi-finite set in \mathbb{R}^{d} is also characterized as an infinite subset of \mathbb{R}^{d} that has no accumulation point. By a closed polyhedral surface in \mathbb{R}^{d}, we mean a $(d-1)$-dimensional closed manifold in \mathbb{R}^{d} that is contained in a union of a finitely many hyperplanes in \mathbb{R}^{d}. By the Jordan-Brouwer separation theorem (see, e.g., [6]), a closed polyhedral surface in \mathbb{R}^{d} divides \mathbb{R}^{d} into two components, one bounded and the other one unbounded. The closure of such a bounded component is called a d-dimensional Jordan-Brouwer polyhedron or, shortly, a polyhedron. For a polyhedron Π, the closed polyhedral surface that bounds Π is denoted by $\partial \Pi$.

Theorem 1. Let X be a quasi-finite set in \mathbb{R}^{d}, and Π be a polyhedron in \mathbb{R}^{d}. For any integer $n>0$, there is a polyhedron similar to Π that contains exactly n points of X.

The proof is accomplished by showing that there is a continuous deformation $\mathscr{H}(s), 0 \leq s \leq 1$, of a polyhedron such that
(a) for every $s \in[0,1], \mathscr{H}(s)$ is a polyhedron that is similar to Π,
(b) $|\mathscr{H}(0) \cap X| \leq n-1$ and $|\mathscr{H}(1) \cap X| \geq n+1$, and
(c) for every $s \in[0,1],|\partial \mathscr{H}(s) \cap X| \leq 1$.

Condition (c) implies that, when s increases from 0 to $1,|\mathcal{H}(s) \cap X|$ changes one by one, and hence, by condition (b), there must be an $s_{0} \in[0,1]$ such that $\left|\mathscr{H}\left(s_{0}\right) \cap X\right|=n$.

The set of all lattice points in \mathbb{R}^{d} is clearly a quasi-finite set. Hence we have the following result from [4] as a corollary of Theorem 1.

Corollary 1. For any polyhedron Π in \mathbb{R}^{d} and any integer $n>0$, there is a polyhedron that is similar to Π and contains exactly n lattice points.

For a polyhedron Π and a real number $\lambda>0$, the set $\lambda \Pi$ denotes the homothet of Π with ratio λ.
Remark 1. If we replace "a polyhedron similar to Π " by "a homothet $\lambda \Pi$ " in Theorem 1 , then it is no longer true. To see this, consider the case that X is the set of all lattice points in \mathbb{R}^{2}, and Π is a square whose edges are parallel to the coordinate-axes. Then, every homothet $\lambda \Pi$ of Π is also a square with edges parallel to the coordinate-axes, and hence the number of lattice points in $\lambda \Pi$ is either $m \times m$ or $(m-1) \times m$ or $(m-1) \times(m-1)$ for some integer $m>0$. Since none of these numbers is equal to, e.g., an odd prime p, there is no $\lambda \Pi$ that contains exactly p lattice points.

Theorem 2. Let Y be a finite point set in \mathbb{R}^{d} and Π be a polyhedron. If N points of Y lie in the interior of Π, then, for every $0<n<N$, there is a polyhedron congruent to $\lambda \Pi$ for some $0<\lambda<1$ that contains exactly n points of Y.

Remark 2. If we drop the condition $0<\lambda<1$ in this theorem, then the assertion would follow easily from the fact that there is a hyperplane that separates n points of Y.

2. Notation and two lemmas

Throughout this paper, X denotes a quasi-finite set in \mathbb{R}^{d}. As already introduced, Π denotes a (d-dimensional) polyhedron in \mathbb{R}^{d}, and $\Sigma=\partial \Pi$ is the closed polyhedral surface that bounds Π. We may suppose that the origin O is an interior point of Π, and that $O \notin X$. We use the following notations: For $A \subset \mathbb{R}^{d}, v \in \mathbb{R}^{d}$, and $t>0$,

$$
\begin{aligned}
v+A & =\{v+x: x \in A\} \quad \text { (the translate of } A \text { by } v \text {), } \\
t A & =\{t x: x \in A\} \quad \text { (the homothetic copy of } A \text { with ratio } t \text {), } \\
A^{*} & =\{-x: x \in A\} \quad \text { (the set symmetric to } A \text { with respect to } 0 \text {). }
\end{aligned}
$$

https://daneshyari.com/en/article/4653173

Download Persian Version:

https://daneshyari.com/article/4653173

Daneshyari.com

[^0]: E-mail addresses: hmaehara@edu.u-ryukyu.ac.jp (H. Maehara), martini@mathematik.tu-chemnitz.de (H. Martini).
 http://dx.doi.org/10.1016/j.ejc.2016.10.002
 0195-6698/© 2016 Elsevier Ltd. All rights reserved.

