Signed enumeration of upper-right corners in path shuffles

William Kuszmaul ${ }^{1}$
University of Minnesota Duluth, 1049 University Dr., Duluth, MN 55812, United States

A R T I CLE I N F O

Article history:

Received 12 August 2015
Accepted 20 September 2016
Available online 11 October 2016

Abstract

We resolve a conjecture of Albert and Bousquet-Mélou enumerating quarter-planar walks with fixed horizontal and vertical projections according to their upper-right-corner count modulo 2 . In doing this, we introduce a signed upper-right-corner count statistic. We find its distribution over planar walks with any choice of fixed horizontal and vertical projections. Additionally, we prove that the polynomial counting loops with a fixed horizontal and vertical projection according to the absolute value of their signed upper-right-corner count is ($x+1$)-positive. Finally, we conjecture an equivalence between $(x+1)$-positivity of the generating function for upper-right-corner count and signed upper-rightcorner count, leading to a reformulation of a conjecture of Albert and Bousquet-Mélou on which their asymptotic analysis of permutations is sortable by two stacks in parallel relies.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

When studying walks on \mathbb{Z}^{2} with unit steps, it is natural to restrict oneself to walks which project vertically on a fixed vertical path \mathcal{V} and horizontally on a fixed horizontal path \mathcal{H}, where \mathcal{V} (resp. \mathcal{H}) comprises North and South steps (resp. East and West steps) [1]. Such paths correspond with shuffles, or interleavings, of \mathcal{V} and \mathscr{H}. If $|\mathcal{V}|=v$ and $|\mathscr{H}|=h$, there are $\binom{v+h}{h}$ such shuffles. It will be convenient to denote East, West, North, and South steps by \rightarrow, \leftarrow, \uparrow, and \downarrow.

[^0]Given a path, several natural statistics arise. In this paper, we focus on variants of peak-count, which counts the number of NW (i.e., Ћ) and ES (i.e., \neg) corners. If the path lies within the first quadrant, then the peak-count is visually the number of peaks pointing away from the origin. Equivalently, peak-count counts occurrences of $\rightarrow \downarrow$ and $\uparrow \leftarrow$ in a shuffle of \mathcal{V} and \mathcal{H}. Albert and Bousquet-Mélou introduced peak-count and showed it to have applications in the study of permutations sortable by two stacks in parallel [1]. They also proved that peak-count has the same distribution over shuffles as do several other statistics (Proposition 14 of [1], which was originally observed by Julien Courtiel and Olivier Bernardi independently).

Albert and Bousquet-Mélou studied several generating functions involving peak-count of planar walks in depth. Although very little is known in the case where the path's horizontal and vertical projections are fixed, Albert and Bousquet-Mélou posed the following conjecture, which they attribute to Julien Courtiel [1].

Conjecture 1.1 (Albert and Bousquet-Mélou, Conjecture (P1) on p. 32 [1]). Let \mathscr{H} (resp. V) be a path beginning and ending at the origin of half-length $i(r e s p . j$) on the alphabet $\{\rightarrow, \leftarrow\}$ (resp. $\{\uparrow, \downarrow\}$). Then the polynomial that counts walks of the shuffle class of $\mathscr{H} \mathcal{V}$ according to the number of \uparrow and \neg corners takes the value $\binom{i+j}{i}$ when evaluated at -1 . Equivalently, the shuffle class of $\mathcal{H} \mathcal{V}$ contains $\binom{i+j}{i}$ more shuffles with even peak-count than with odd peak-count.

Albert and Bousquet-Mélou note that, among other things, proving the conjecture would eliminate the need for the somewhat lengthy proof of their Proposition 15 [1].

We prove Conjecture 1.1 and extend it to the case where \mathscr{H} and \mathcal{V} are arbitrary words on the alphabets $\{\rightarrow, \leftarrow\}$ and $\{\uparrow, \downarrow\}$ respectively. This corresponds with considering arbitrary walks on the plane, rather than only planar loops.

In order to study peak-count modulo 2, it is sufficient to study what we call signed peak-count, which is the number of \neg corners minus the number of \neg corners. While signed peak-count and peak-count are guaranteed to share the same parity, it turns out that signed peak-count exhibits nice behavior allowing for it to be completely enumerated.

Theorem 1.2. Let \mathcal{V} be a word comprising $u \uparrow$'s and $d \downarrow$'s. Let \mathcal{H} be a word comprising $r \rightarrow$'s and $l \leftarrow$'s. Then the number of shuffles of \mathcal{V} and \mathscr{H} with signed peak-count k is

$$
\binom{r+u}{u-k}\binom{l+d}{d+k}
$$

Note that Theorem 1.2 immediately leads to a formula for the difference between the number of even and odd peak-count shuffles of \mathcal{V} and \mathscr{H}.

$$
\begin{equation*}
\sum_{k}(-1)^{k}\binom{r+u}{u-k}\binom{l+d}{d+k} . \tag{1}
\end{equation*}
$$

In certain key cases, Formula (1) simplifies. When $r=l$ and $u=d$ (as is the case in Conjecture 1.1), Formula (1) becomes

$$
\sum_{k}(-1)^{k}\binom{r+u}{u-k}\binom{r+u}{u+k}=\binom{r+u}{u}
$$

by equation (30) of [6].
Additionally, when $r=u$ and $l=d$, Formula (1) becomes

$$
\sum_{k}(-1)^{k}\binom{2 r}{r-k}\binom{2 l}{l+k},
$$

which is known [6, Equation 29] to be the super Catalan number,

$$
S(r, k)=\frac{(2 r)!(2 k)!}{r!k!(r+k)!}
$$

https://daneshyari.com/en/article/4653185

Download Persian Version:

https://daneshyari.com/article/4653185

Daneshyari.com

[^0]: E-mail address: william.kuszmaul@gmail.com.
 1 Present address: Stanford University, P.O. Box 16632, 531 Lasuen Mall, Stanford, CA 94305, USA.
 http://dx.doi.org/10.1016/j.ejc.2016.09.007
 0195-6698/© 2016 Elsevier Ltd. All rights reserved.

