The Raney numbers and ($s, s+1$)-core partitions

CrossMark

Robin D.P. Zhou ${ }^{\text {a }}$, Sherry H.F. Yan ${ }^{\text {b }}$
${ }^{\text {a }}$ College of Mathematics Physics and Information, Shaoxing University, Shaoxing 312000, PR China
${ }^{\mathrm{b}}$ Department of Mathematics, Zhejiang Normal University, Jinhua 321004, PR China

ARTICLE INFO

Article history:

Received 3 January 2016
Accepted 5 August 2016
Available online 27 August 2016

Abstract

The Raney numbers $R_{p, r}(k)$ are a two-parameter generalization of the Catalan numbers. In this paper, we give a combinatorial proof for a recurrence relation of the Raney numbers in terms of coral diagrams. Using this recurrence relation, we confirm a conjecture posed by Amdeberhan concerning the enumeration of $(s, s+1)$ core partitions λ with parts that are multiples of p. As a corollary, we give a new combinatorial interpretation for the Raney numbers $R_{p+1, r+1}(k)$ with $0 \leq r<p$ in terms of ($k p+r, k p+r+1$)-core partitions λ with parts that are multiples of p. © 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we build a connection between the Raney numbers and ($s, s+1$)-core partitions with parts that are multiples of p. We show that the number of $(k p+r, k p+r+1)$-core partitions with parts that are multiples of p equals the Raney number $R_{p+1, r+1}(k)$, confirming a conjecture posed by Amdeberhan [1].

The Raney numbers $R_{p, r}(k)$ were introduced by Raney in his investigation of functional composition patterns [14] and these numbers have also been used in probability theory [11,12]. The Raney numbers $R_{p, r}(k)$ are defined as follows:

$$
\begin{equation*}
R_{p, r}(k)=\frac{r}{k p+r}\binom{k p+r}{k} \tag{1.1}
\end{equation*}
$$

[^0]The Raney numbers are a two-parameter generalization of the Catalan numbers. To be more specific, if $r=1$, the Raney numbers specialize to the Fuss-Catalan numbers $C_{p}(k)$ [8,9], where $C_{p}(k)$ are the numbers of p-ary trees with k internal vertices and

$$
C_{p}(k)=R_{p, 1}(k)=\frac{1}{k p+1}\binom{k p+1}{k} .
$$

If we further set $p=2$, we obtain the classical Catalan numbers C_{k}, that is,

$$
R_{2,1}(k)=C_{k}=\frac{1}{k+1}\binom{2 k}{k}
$$

Let $\mathscr{C}_{p}(x)$ and $\mathcal{R}_{p, r}(x)$ denote the generating functions of the Fuss-Catalan numbers $C_{p}(k)$ and the Raney numbers $R_{p, r}(k)$, respectively, namely,

$$
\begin{gathered}
\mathcal{C}_{p}(x)=\sum_{k \geq 0} C_{p}(k) x^{k}=\sum_{k \geq 0} \frac{1}{k p+1}\binom{k p+1}{k} x^{k}, \\
\mathcal{R}_{p, r}(x)=\sum_{k \geq 0} R_{p, r}(k) x^{k}=\sum_{k \geq 0} \frac{r}{k p+r}\binom{k p+r}{k} x^{k} .
\end{gathered}
$$

It is easily seen that $\mathcal{C}_{p}(x)=\mathcal{R}_{p, 1}(x)$. The following theorem gives more relations of the generating functions $\mathcal{C}_{p}(x)$ and $\mathcal{R}_{p, r}(x)$.

Theorem 1.1 ([8,9]). Let p be a positive integer and let r, k be nonnegative integers. Then we have

$$
\begin{array}{r}
\mathcal{C}_{p}(x)=1+x \mathcal{C}_{p}(x)^{p} \\
\mathcal{R}_{p, r}(x)=\mathcal{C}_{p}(x)^{r} \tag{1.3}
\end{array}
$$

Notice that $\mathcal{C}_{p}(x)=\mathcal{R}_{p, 1}(x)$. The following theorem is followed directly by equating the coefficients of x^{k} in (1.2) and (1.3).

Theorem 1.2. Let p be a positive integer and let r, k be nonnegative integers. Then the number $R_{p, r}(k)$ satisfies the recurrence relations

$$
\begin{align*}
& R_{p, 1}(k)=\sum_{i=0}^{k-1} R_{p, 1}(i) R_{p, p-1}(k-1-i), \tag{1.4}\\
& R_{p, r}(k)=\sum_{i=0}^{k} R_{p, 1}(i) R_{p, r-1}(k-i), \quad \text { for } r>1, \tag{1.5}
\end{align*}
$$

with the initial values $R_{p, r}(0)=1$ if $r \geq 0$ and $R_{p, 0}(k)=0$ if $k>0$.
Notice that $C_{k}=R_{2,1}(k)$. Substituting $p=2$ into (1.4), we obtain the recurrence relation for the Catalan numbers $C_{k}=\sum_{i=0}^{k-1} C_{i} C_{k-1-i}$.

Let us give an overview of notation and terminology on partitions. A partition λ of a positive integer n is a finite nonincreasing sequence of positive integers $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)$ such that $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{m}=$ n. We write $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right) \vdash n$ and we say that n is the size of λ and m is the length of λ. The Young diagram of λ is defined to be an up- and left-justified array of n boxes with λ_{i} boxes in the i th row. Each box B in λ determines a hook consisting of the box B itself and boxes directly to the right and directly below B. The hook length of B, denoted $h(B)$, is the number of boxes in the hook of B.

For a partition λ, the β-set of λ, denoted $\beta(\lambda)$, is defined to be the set of hook lengths of the boxes in the first column of λ. For example, Fig. 1 illustrates the Young diagram and the hook lengths of a partition $\lambda=(5,3,2,2,1)$. The β-set of λ is $\beta(\lambda)=\{9,6,4,3,1\}$. Notice that a partition λ is uniquely determined by its β-set. Given a decreasing sequence of positive integers $\left(h_{1}, h_{2}, \ldots, h_{m}\right)$, it is easily seen that the unique partition λ with $\beta(\lambda)=\left\{h_{1}, h_{2}, \ldots, h_{m}\right\}$ is $\lambda=\left(h_{1}-(m-1), h_{2}-\right.$ $\left.(m-2), \ldots, h_{m-1}-1, h_{m}\right)$.

https://daneshyari.com/en/article/4653199

Download Persian Version:
https://daneshyari.com/article/4653199

Daneshyari.com

[^0]: E-mail addresses: dapao2012@163.com (R.D.P. Zhou), huifangyan@hotmail.com (S.H.F. Yan).
 http://dx.doi.org/10.1016/j.ejc.2016.08.003
 0195-6698/© 2016 Elsevier Ltd. All rights reserved.

