Cutting convex curves

Andreas F. Holmsen ${ }^{\text {a }}$, János Kincses ${ }^{\text {b }}$, Edgardo Roldán-Pensado ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Mathematical Sciences, KAIST, Daejeon, South Korea
${ }^{\mathrm{b}}$ University of Szeged, Bolyai Institute Aradi vértanúk tere 1., H-6720 Szeged, Hungary
${ }^{\text {c }}$ Instituto de Matemáticas, UNAM campus Juriquilla, Querétaro, Mexico

ARTICLE INFO

Article history:

Received 27 January 2016
Accepted 30 April 2016
Available online 27 May 2016

Abstract

We show that for any two convex curves C_{1} and C_{2} in \mathbb{R}^{d} parametrized by $[0,1]$ with opposite orientations, there exists a hyperplane H with the following property: For any $t \in[0,1]$ the points $C_{1}(t)$ and $C_{2}(t)$ are never in the same open half space bounded by H. This will be deduced from a more general result on equipartitions of ordered point sets by hyperplanes.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In [3] the following interesting theorem is proved: If $A_{1}, A_{2}, \ldots, A_{n}$ and $B_{1}, B_{2}, \ldots, B_{n}$ are the vertices of two convex polygons in the plane ordered cyclically with opposite orientation, then there exists a line that intersects each of the line segments $A_{j} B_{j}$.

This result can be derived from a continuous version of the problem which has an elementary topological argument (which is what they do in [3]). The natural problem which is raised in [3] is to try to generalize this result to higher dimensions, and some partial results are proven for convex polytopes in \mathbb{R}^{3} (but with some limitations).

Here we will give a generalization of this theorem to arbitrary dimensions. Our proof is essentially different from the one given in [3] and uses notions from oriented matroid theory together with a basic fixed-point theorem.

A convex curve in \mathbb{R}^{d} is a continuous mapping $C:[0,1] \rightarrow \mathbb{R}^{d}$ which intersects every hyperplane at most d times, meaning $|\{t \in[0,1]: C(t) \in H\}| \leq d$ for any hyperplane $H \subset \mathbb{R}^{d}$. The name comes

[^0]from the fact that in \mathbb{R}^{2} a convex curve corresponds to a connected subset of the boundary of a convex body. A typical example of a convex curve in \mathbb{R}^{d} is the so-called moment curve,
$$
\left\{\left(t, t^{2}, \ldots, t^{d}\right): t \in[0,1]\right\}
$$
which has numerous applications in discrete and computational geometry. For instance, the convex hull of $n>d$ distinct points on the moment curve in \mathbb{R}^{d} is a cyclic d-polytope [7], which is arguably the most useful example of a neighborly polytope.

An important feature of a convex curve in \mathbb{R}^{d} is the fact that for any $0 \leq t_{0}<t_{1}<\cdots<t_{d} \leq 1$, the determinant

$$
\operatorname{det}\left[\begin{array}{cccc}
C\left(t_{0}\right) & C\left(t_{1}\right) & \cdots & C\left(t_{d}\right) \tag{1}\\
1 & 1 & \cdots & 1
\end{array}\right]
$$

does not vanish, which is in fact a defining property of convex curves [5]. (In the case of a closed convex curve, e.g. $C(0)=C(1)$, we naturally require that $t_{d}<1$.) This implies that the determinant (1) has the same sign for all choices $0 \leq t_{0}<t_{1}<\cdots<t_{d} \leq 1$, and therefore we may define the orientation of a convex curve C to be positive or negative according to the sign of the determinant (1).

In this note we report the following interesting property concerning pairs of convex curves.
Theorem 1.1. Let C_{1} and C_{2} be convex curves in \mathbb{R}^{d} with opposite orientations. There exists a hyperplane H such that the points $C_{1}(t)$ and $C_{2}(t)$ are never contained in the same open half space bounded by H.

For $d=2$ this is the main result shown in [3]. Somewhat surprisingly, the convexity plays a rather minor role. Theorem 1.1 will be deduced from a more general result concerning point sets, stated below as Theorem 2.1.

2. Order-types

Let A be a set of points in \mathbb{R}^{d} which affinely spans \mathbb{R}^{d}. The order-type of A is the set of signs of the determinants

$$
\operatorname{det}\left[\begin{array}{cccc}
a_{0} & a_{1} & \cdots & a_{d} \tag{2}\\
1 & 1 & \cdots & 1
\end{array}\right]
$$

indexed by the $(d+1)$-tuples $\left(a_{0}, a_{1}, \ldots, a_{d}\right) \in A^{d+1}$ with distinct entries. Notice that the condition that A affinely spans \mathbb{R}^{d} guarantees the existence of at least one $(d+1)$-tuple such that the determinant (2) is non-zero. Usually, the notion of order-type is used with finite sets of points, however we will allow the possibility of A being infinite.

The order-type defines an equivalence relation on sets of points in \mathbb{R}^{d}, in which two sets A and B are equivalent if there exists a bijection $\gamma: A \rightarrow B$ with

$$
\operatorname{sgn} \operatorname{det}\left[\begin{array}{cccc}
a_{0} & a_{1} & \cdots & a_{d} \tag{3}\\
1 & 1 & \cdots & 1
\end{array}\right]=\operatorname{sgn} \operatorname{det}\left[\begin{array}{cccc}
\gamma\left(a_{0}\right) & \gamma\left(a_{1}\right) & \cdots & \gamma\left(a_{d}\right) \\
1 & 1 & \cdots & 1
\end{array}\right]
$$

for all $(d+1)$-tuples $\left(a_{0}, a_{1}, \ldots, a_{d}\right)$ with distinct entries (see e.g. [2]).
To the other extreme, we say that the sets A and B have opposite order-types if

$$
\operatorname{sgn} \operatorname{det}\left[\begin{array}{cccc}
a_{0} & a_{1} & \cdots & a_{d} \\
1 & 1 & \cdots & 1
\end{array}\right]=-\operatorname{sgn} \operatorname{det}\left[\begin{array}{cccc}
\gamma\left(a_{0}\right) & \gamma\left(a_{1}\right) & \cdots & \gamma\left(a_{d}\right) \\
1 & 1 & \cdots & 1
\end{array}\right]
$$

is satisfied instead of (3). In this case we say that γ is order-type reversing.
Theorem 2.1. Let A and B be point sets in \mathbb{R}^{d} which affinely span \mathbb{R}^{d}. If $\gamma: A \rightarrow B$ is an order-type reversing bijection, then there exists a hyperplane which intersects all the segments ab with $b=\gamma(a)$.

Remark 2.2. The condition on the affine span of the point sets could be weakened, but this would involve refining the notion of the order-type (since all the determinants (2) would vanish) and the statement of Theorem 2.1 would become more technical.

https://daneshyari.com/en/article/4653213

Download Persian Version:
https://daneshyari.com/article/4653213

Daneshyari.com

[^0]: E-mail addresses: andreash@kaist.edu (A.F. Holmsen), kincses@math.u-szeged.hu (J. Kincses), e.roldan@im.unam.mx (E. Roldán-Pensado).
 http://dx.doi.org/10.1016/j.ejc.2016.04.011
 0195-6698/© 2016 Elsevier Ltd. All rights reserved.

