

Contents lists available at ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

Cutting convex curves

European Journal of Combinatorics

Andreas F. Holmsen^a, János Kincses^b, Edgardo Roldán-Pensado^c

^a Department of Mathematical Sciences, KAIST, Daejeon, South Korea

^b University of Szeged, Bolyai Institute Aradi vértanúk tere 1., H-6720 Szeged, Hungary

^c Instituto de Matemáticas, UNAM campus Juriquilla, Querétaro, Mexico

ARTICLE INFO

Article history: Received 27 January 2016 Accepted 30 April 2016 Available online 27 May 2016

ABSTRACT

We show that for any two convex curves C_1 and C_2 in \mathbb{R}^d parametrized by [0, 1] with opposite orientations, there exists a hyperplane H with the following property: For any $t \in [0, 1]$ the points $C_1(t)$ and $C_2(t)$ are never in the same open half space bounded by H. This will be deduced from a more general result on equipartitions of ordered point sets by hyperplanes.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In [3] the following interesting theorem is proved: If $A_1, A_2, ..., A_n$ and $B_1, B_2, ..., B_n$ are the vertices of two convex polygons in the plane ordered cyclically with opposite orientation, then there exists a line that intersects each of the line segments A_iB_i .

This result can be derived from a continuous version of the problem which has an elementary topological argument (which is what they do in [3]). The natural problem which is raised in [3] is to try to generalize this result to higher dimensions, and some partial results are proven for convex polytopes in \mathbb{R}^3 (but with some limitations).

Here we will give a generalization of this theorem to arbitrary dimensions. Our proof is essentially different from the one given in [3] and uses notions from oriented matroid theory together with a basic fixed-point theorem.

A convex curve in \mathbb{R}^d is a continuous mapping $C: [0, 1] \to \mathbb{R}^d$ which intersects every hyperplane at most *d* times, meaning $|\{t \in [0, 1] : C(t) \in H\}| \le d$ for any hyperplane $H \subset \mathbb{R}^d$. The name comes

http://dx.doi.org/10.1016/j.ejc.2016.04.011

0195-6698/© 2016 Elsevier Ltd. All rights reserved.

E-mail addresses: andreash@kaist.edu (A.F. Holmsen), kincses@math.u-szeged.hu (J. Kincses), e.roldan@im.unam.mx (E. Roldán-Pensado).

from the fact that in \mathbb{R}^2 a convex curve corresponds to a connected subset of the boundary of a convex body. A typical example of a convex curve in \mathbb{R}^d is the so-called *moment curve*,

$$\left\{ \left(t, t^2, \dots, t^d\right) : t \in [0, 1] \right\},\$$

which has numerous applications in discrete and computational geometry. For instance, the convex hull of n > d distinct points on the moment curve in \mathbb{R}^d is a cyclic *d*-polytope [7], which is arguably the most useful example of a neighborly polytope.

An important feature of a convex curve in \mathbb{R}^d is the fact that for any $0 \le t_0 < t_1 < \cdots < t_d \le 1$, the determinant

$$\det \begin{bmatrix} C(t_0) & C(t_1) & \cdots & C(t_d) \\ 1 & 1 & \cdots & 1 \end{bmatrix}$$
(1)

does not vanish, which is in fact a defining property of convex curves [5]. (In the case of a *closed* convex curve, e.g. C(0) = C(1), we naturally require that $t_d < 1$.) This implies that the determinant (1) has the same sign for all choices $0 \le t_0 < t_1 < \cdots < t_d \le 1$, and therefore we may define the *orientation* of a convex curve *C* to be *positive* or *negative* according to the sign of the determinant (1).

In this note we report the following interesting property concerning pairs of convex curves.

Theorem 1.1. Let C_1 and C_2 be convex curves in \mathbb{R}^d with opposite orientations. There exists a hyperplane *H* such that the points $C_1(t)$ and $C_2(t)$ are never contained in the same open half space bounded by *H*.

For d = 2 this is the main result shown in [3]. Somewhat surprisingly, the convexity plays a rather minor role. Theorem 1.1 will be deduced from a more general result concerning point sets, stated below as Theorem 2.1.

2. Order-types

Let *A* be a set of points in \mathbb{R}^d which affinely spans \mathbb{R}^d . The *order-type* of *A* is the set of signs of the determinants

 $\det \begin{bmatrix} a_0 & a_1 & \cdots & a_d \\ 1 & 1 & \cdots & 1 \end{bmatrix}$ (2)

indexed by the (d + 1)-tuples $(a_0, a_1, \ldots, a_d) \in A^{d+1}$ with distinct entries. Notice that the condition that *A* affinely spans \mathbb{R}^d guarantees the existence of at least one (d+1)-tuple such that the determinant (2) is non-zero. Usually, the notion of order-type is used with finite sets of points, however we will allow the possibility of *A* being infinite.

The order-type defines an equivalence relation on sets of points in \mathbb{R}^d , in which two sets *A* and *B* are equivalent if there exists a bijection $\gamma : A \to B$ with

$$\operatorname{sgn}\operatorname{det}\begin{bmatrix}a_0 & a_1 & \cdots & a_d\\1 & 1 & \cdots & 1\end{bmatrix} = \operatorname{sgn}\operatorname{det}\begin{bmatrix}\gamma(a_0) & \gamma(a_1) & \cdots & \gamma(a_d)\\1 & 1 & \cdots & 1\end{bmatrix}$$
(3)

for all (d + 1)-tuples (a_0, a_1, \ldots, a_d) with distinct entries (see e.g. [2]).

To the other extreme, we say that the sets A and B have opposite order-types if

$$\operatorname{sgn}\operatorname{det}\begin{bmatrix}a_0 & a_1 & \cdots & a_d\\1 & 1 & \cdots & 1\end{bmatrix} = -\operatorname{sgn}\operatorname{det}\begin{bmatrix}\gamma(a_0) & \gamma(a_1) & \cdots & \gamma(a_d)\\1 & 1 & \cdots & 1\end{bmatrix}$$

is satisfied instead of (3). In this case we say that γ is order-type reversing.

Theorem 2.1. Let A and B be point sets in \mathbb{R}^d which affinely span \mathbb{R}^d . If $\gamma : A \to B$ is an order-type reversing bijection, then there exists a hyperplane which intersects all the segments ab with $b = \gamma(a)$.

Remark 2.2. The condition on the affine span of the point sets could be weakened, but this would involve refining the notion of the order-type (since all the determinants (2) would vanish) and the statement of Theorem 2.1 would become more technical.

Download English Version:

https://daneshyari.com/en/article/4653213

Download Persian Version:

https://daneshyari.com/article/4653213

Daneshyari.com