Multiply union families in \mathbb{N}^{n}

CrossMark

Peter Frankl ${ }^{\text {a }}$, Masashi Shinohara ${ }^{\text {b }}$, Norihide Tokushige ${ }^{\text {c }}$
${ }^{\text {a }}$ Alfréd Rényi Institute of Mathematics, H-1364 Budapest, P.O.Box 127, Hungary
${ }^{\text {b }}$ Faculty of Education, Shiga University, 2-5-1 Hiratsu, Shiga 520-0862, Japan
${ }^{\text {c }}$ College of Education, Ryukyu University, Nishihara, Okinawa 903-0213, Japan

ARTICLE INFO

Article history:

Received 28 October 2015
Accepted 20 May 2016
Available online 11 June 2016

Abstract

Let $A \subset \mathbb{N}^{n}$ be an r-wise s-union family, that is, a family of sequences with n components of non-negative integers such that for any r sequences in A the total sum of the maximum of each component in those sequences is at most s. We determine the maximum size of A and its unique extremal configuration provided (i) n is sufficiently large for fixed r and s, or (ii) $n=r+1$.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Let $\mathbb{N}:=\{0,1,2, \ldots\}$ denote the set of non-negative integers, and let $[n]:=\{1,2, \ldots, n\}$. Intersecting families in $2^{[n]}$ or $\{0,1\}^{n}$ are one of the main objects in extremal set theory. The equivalent dual form of an intersecting family is a union family, which is the subject of this paper. In [5] Frankl and Tokushige proposed to consider such problems not only in $\{0,1\}^{n}$ but also in $[q]^{n}$. They determined the maximum size of 2 -wise s-union families (i) in $[q]^{n}$ for $n>n_{0}(q, s)$, and (ii) in \mathbb{N}^{3} for all s (the definitions will be given shortly). In this paper we extend their results and determine the maximum size and structure of r-wise s-union families in \mathbb{N}^{n} for the following two cases: (i) $n \geq n_{0}(r$, s), and (ii) $n=r+1$. Much research has been done for the case of families in $\{0,1\}^{n}$, and there are many challenging open problems. The interested reader is referred to [2-4,8,9].

For a vector $\mathbf{x} \in \mathbb{R}^{n}$, we write x_{i} or $(\mathbf{x})_{i}$ for the i th component, so $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Define the weight of $\mathbf{a} \in \mathbb{N}^{n}$ by

$$
|\mathbf{a}|:=\sum_{i=1}^{n} a_{i} .
$$

[^0]For a finite number of vectors $\mathbf{a}, \mathbf{b}, \ldots, \mathbf{z} \in \mathbb{N}^{n}$ define the join $\mathbf{a} \vee \mathbf{b} \vee \cdots \vee \mathbf{z}$ by

$$
(\mathbf{a} \vee \mathbf{b} \vee \cdots \vee \mathbf{z})_{i}:=\max \left\{a_{i}, b_{i}, \ldots, z_{i}\right\},
$$

and we say that $A \subset \mathbb{N}^{n}$ is r-wise s-union if

$$
\left|\mathbf{a}_{1} \vee \mathbf{a}_{2} \vee \cdots \vee \mathbf{a}_{r}\right| \leq s \quad \text { for all } \mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{r} \in A
$$

In this paper we address the following problem.
Problem 1. For given n, r and s, determine the maximum size $|A|$ of r-wise s-union families $A \subset \mathbb{N}^{n}$.
To describe candidates A that give the maximum size to the above problem, we need some more definitions. Let us introduce a partial order \prec in \mathbb{R}^{n}. For $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n}$ we let $\mathbf{a} \prec \mathbf{b}$ iff $a_{i} \leq b_{i}$ for all $1 \leq i \leq n$. Then we define a down set for $\mathbf{a} \in \mathbb{N}^{n}$ by

$$
\mathscr{D}(\mathbf{a}):=\left\{\mathbf{c} \in \mathbb{N}^{n}: \mathbf{c}<\mathbf{a}\right\},
$$

and for $A \subset \mathbb{N}^{n}$ let

$$
\mathscr{D}(A):=\bigcup_{\mathbf{a} \in A} \mathscr{D}(\mathbf{a}) .
$$

We also introduce $s(\mathbf{a}, d)$, which can be viewed as a part of sphere centered at $\mathbf{a} \in \mathbb{N}^{n}$ with radius $d \in \mathbb{N}$, defined by

$$
s(\mathbf{a}, d):=\left\{\mathbf{a}+\boldsymbol{\epsilon} \in \mathbb{N}^{n}: \boldsymbol{\epsilon} \in \mathbb{N}^{n},|\boldsymbol{\epsilon}|=d\right\} .
$$

We say that $\mathbf{a} \in \mathbb{N}^{n}$ is a balanced partition, if all a_{i} 's are as close to each other as possible, more precisely, $\left|a_{i}-a_{j}\right| \leq 1$ for all i, j. Let $\mathbf{1}:=(1,1, \ldots, 1) \in \mathbb{N}^{n}$.

For $r, s, n, d \in \mathbb{N}$ with $0 \leq d \leq\left\lfloor\frac{s}{r}\right\rfloor$ and $\mathbf{a} \in \mathbb{N}^{n}$ with $|\mathbf{a}|=s-r d$ let us define a family K by

$$
\begin{equation*}
K=K(r, n, \mathbf{a}, d):=\bigcup_{i=0}^{\left\lfloor\frac{d}{u}\right\rfloor} \mathcal{D}(s(\mathbf{a}+i \mathbf{1}, d-u i)), \tag{1}
\end{equation*}
$$

where $u=n-r+1$. This is the candidate family. Intuitively K is a union of balls, and the corresponding centers and radii are chosen so that K is r-wise s-union as we will see in Claim 3 in the next section.

Conjecture 1. Let $r \geq 2$ and s be positive integers. If $A \subset \mathbb{N}^{n}$ is r-wise s-union, then

$$
|A| \leq \max _{0 \leq d \leq\left\lfloor\frac{s}{r}\right\rfloor}|K(r, n, \mathbf{a}, d)|,
$$

where $\mathbf{a} \in \mathbb{N}^{n}$ is a balanced partition with $|\mathbf{a}|=s-r d$. Moreover if equality holds, then $A=K(r, n, \mathbf{a}, d)$ for some $0 \leq d \leq\left\lfloor\frac{s}{r}\right\rfloor$.

We first verify the conjecture when n is sufficiently large for fixed r, s. Let \mathbf{e}_{i} be the i th standard base of \mathbb{R}^{n}, that is, $\left(\mathbf{e}_{i}\right)_{j}=\delta_{i j}$. Let $\tilde{\mathbf{e}}_{0}=\mathbf{0}$, and $\tilde{\mathbf{e}}_{i}=\sum_{j=1}^{i} \mathbf{e}_{j}$ for $1 \leq i \leq n$, e.g., $\tilde{\mathbf{e}}_{n}=\mathbf{1}$.

Theorem 1. Let $r \geq 2$ and s be fixed positive integers. Write $s=d r+p$ where d and p are non-negative integers with $0 \leq p<r$. Then there exists an $n_{0}(r, s)$ such that if $n>n_{0}(r, s)$ and $A \subset \mathbb{N}^{n}$ is r-wise s-union, then

$$
|A| \leq\left|\mathscr{D}\left(f\left(\tilde{\mathbf{e}}_{p}, d\right)\right)\right| .
$$

Moreover if equality holds, then A is isomorphic to $\mathcal{D}\left(s\left(\tilde{\mathbf{e}}_{p}, d\right)\right)=K\left(r, n, \tilde{\mathbf{e}}_{p}, d\right)$.
We mention that the case $A \subset\{0,1\}^{n}$ of Conjecture is posed in [2] and partially solved in [2,3], and the case $r=2$ of Theorem 1 is proved in [5] in a slightly stronger form. We also notice that

https://daneshyari.com/en/article/4653217

Download Persian Version:
https://daneshyari.com/article/4653217

Daneshyari.com

[^0]: E-mail addresses: peter.frankl@gmail.com (P. Frankl), shino@edu.shiga-u.ac.jp (M. Shinohara), hide@edu.u-ryukyu.ac.jp (N . Tokushige).
 http://dx.doi.org/10.1016/j.ejc.2016.05.007
 0195-6698/© 2016 Elsevier Ltd. All rights reserved.

