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a b s t r a c t

Given a 4-regular graph F , we introduce a binarymatroidMτ (F) on
the set of transitions of F . Parametrized versions of the Tutte poly-
nomial ofMτ (F) yield several well-known graph and knot polyno-
mials, including the Martin polynomial, the homflypt polynomial,
the Kauffman polynomial and the Bollobás–Riordan polynomial.
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1. Introduction

Agraph is determined by two finite sets, one set containing vertices and the other containing edges.
Each edge is incident on one or two vertices; an edge incident on only one vertex is a loop. We think
of an edge as consisting of two distinct half-edges, each of which is incident on precisely one vertex.
In this paper we are especially interested in 4-regular graphs, i.e., graphs in which each vertex has
precisely four incident half-edges. The special theory of 4-regular graphs was initiated by Kotzig and
although his definitions and results have been generalized and modified over the years, most of the
basic ideas of the theory appear in his seminal paper [50].

Matroids were introduced by Whitney [81], and there are several standard texts about them
[36,61,77–80]. In this paper we will only encounter binary matroids. If M is a GF(2)-matrix with
columns indexed by the elements of a set S, then the binary matroid represented by M is given by
defining the rank of each subset A ⊆ S to be equal to the dimension of the GF(2)-space spanned
by the corresponding columns of M . Matroids can be defined in many other ways. In particular, the
minimal nonempty subsets of S that correspond to linearly dependent sets of columns of M are the
circuits of thematroid represented byM .Wewill not refer tomatroid circuits often, to avoid confusion
with the following definition.
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Fig. 1. A 4-regular graph with one vertex has four distinct circuits.

A circuit in a graph is a sequence v1, h1, h′1, v2, h2, . . . , hk, h′k = h′0, vk+1 = v1 such that for
each i ∈ {1, . . . , k}, hi and h′i are half-edges of a single edge and h′i−1 and hi are both incident on vi.
The half-edges that appear in a circuit must be pairwise distinct, but vertices may be repeated. Two
circuits are considered to be the same if they differ only by a combination of cyclic permutations
(1, . . . , k) → (i, . . . , k, 1, . . . , i − 1) and reversals (1, . . . , k) → (k, . . . , 1). Notice that these
definitions seem to be essentially non-matroidal: circuits may be nested, and distinct circuits may
involve precisely the same vertices and half-edges, in different orders. For instance if a graph has one
vertex v and two edges e1 = {f , f ′} and e2 = {h, h′} (both loops), then it has four different circuits: v,
f , f ′, v; v, f , f ′, v, h′, h, v; v, f , f ′, v, h, h′, v and v, h, h′, v. See Fig. 1, where these circuits are indicated
from left to right, using the convention that when a circuit traverses a vertex, the dash style (dashed
or undashed) is maintained.

A circuit v1, h1, h′1, v2, . . . , hk, h′k = h′0, vk+1 = v1 in a 4-regular graph is specified by the triples
h′i−1, vi, hi where h′i−1 and hi are distinct half-edges incident on vi. We call such a triple a single
transition. Kotzig called these triples ‘‘transitions’’ [50], but we adopt the convention used by other
authors (including Ellis-Monaghan and Sarmiento [31], Jaeger [42] and Las Vergnas [52,53]) that a
transition consists of two disjoint single transitions at the same vertex.

A circuit partition (or Eulerian partition or ξ -decomposition) of a 4-regular graph F is a partition of
E(F) into edge-disjoint circuits. These partitions were mentioned by Kotzig [50], and since then it has
become clear that they are of fundamental significance in the theory of 4-regular graphs. Expanding
on earlier work of Martin [57], Las Vergnas [53] introduced the generating function that records the
sizes of circuit partitions of F , and also the generating functions that record the sizes of directed circuit
partitions of directed versions of F ; he called these generating functions the Martin polynomials of F .
A circuit partition of F is determined by choosing one of the three transitions at each vertex, and
Jaeger [42] used this fact in defining his transition polynomial, a form of the Martin polynomial that
incorporates transition labels. A labeled form of theMartin polynomial was independently discovered
by Kauffman, who used it in his bracket polynomial definition of the Jones polynomial of a knot or
link [45,47].

For plane graphs, there is an indirect connection between Martin polynomials and graphic ma-
troids, introduced by Martin [57] and further elucidated by Las Vergnas [51] and Jaeger [42]. (The
corresponding result for the Kauffman bracket is due to Thistlethwaite [68].) The complementary re-
gions of a 4-regular graph F embedded in the plane can be colored checkerboard fashion, yielding a
pair of dual graphs with F as medial; the cycle matroid of either of the two dual graphs yields the
Martin polynomial of a directed version of F . This indirect connection has been extended to several
formulas, each time weakening the connection with matroids: Jaeger extended it to include infor-
mation from the undirected Martin polynomial [40], Las Vergnas extended it to medial graphs in the
projective plane and the torus [52], and Ellis-Monaghan andMoffatt extended it to include medials in
surfaces of all genera [28,29].

The purpose of the present paper is to introduce a more general connection between matroids
and Martin polynomials, which holds for all 4-regular graphs and does not require surface geometry.
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