European Journal of Combinatorics 57 (2016) 71-84

Contents lists available at ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

Edge-disjoint rainbow spanning trees in complete graphs

European Journal of Combinatorics

James M. Carraher^a, Stephen G. Hartke^b, Paul Horn^c

^a Department of Mathematics and Statistics, University of Nebraska at Kearney, United States

^b Department of Mathematical and Statistical Sciences, University of Colorado Denver, United States

^c Department of Mathematics, University of Denver, United States

ARTICLE INFO

Article history: Received 10 August 2015 Accepted 6 April 2016 Available online 13 May 2016

ABSTRACT

Let *G* be an edge-colored copy of K_n , where each color appears on at most n/2 edges (the edge-coloring is not necessarily proper). A rainbow spanning tree is a spanning tree of *G* where each edge has a different color. Brualdi and Hollingsworth (1996) conjectured that every properly edge-colored K_n ($n \ge 6$ and even) using exactly n-1 colors has n/2 edge-disjoint rainbow spanning trees, and they proved there are at least two edge-disjoint rainbow spanning trees. Kaneko et al. (2003) strengthened the conjecture to include any proper edge-coloring of K_n , and they proved there are at least three edge-disjoint rainbow spanning trees. Akbari and Alipour (2007) showed that each K_n that is edge-colored such that no color appears more than n/2 times contains at least two rainbow spanning trees.

We prove that if $n \ge 1,000,000$, then an edge-colored K_n , where each color appears on at most n/2 edges, contains at least $\lfloor n/(1000 \log n) \rfloor$ edge-disjoint rainbow spanning trees.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Let *G* be an edge-colored copy of K_n , where each color appears on at most n/2 edges (the edge-coloring is not necessarily proper). A rainbow spanning tree is a spanning tree of *G* such that each edge has a different color. Brualdi and Hollingsworth [4] conjectured that every properly edge-colored K_n

http://dx.doi.org/10.1016/j.ejc.2016.04.003

0195-6698/© 2016 Elsevier Ltd. All rights reserved.

E-mail addresses: carraherjm2@unk.edu (J.M. Carraher), stephen.hartke@ucdenver.edu (S.G. Hartke), paul.horn@du.edu (P. Horn).

 $(n \ge 6 \text{ and even})$ where each color class is a perfect matching has a decomposition of the edges of K_n into n/2 edge-disjoint rainbow spanning trees. They proved there are at least two edge-disjoint rainbow spanning trees in such an edge-colored K_n . Kaneko, Kano, and Suzuki [13] strengthened the conjecture to say that for any proper edge-coloring of K_n $(n \ge 6)$ contains at least $\lfloor n/2 \rfloor$ edge-disjoint rainbow spanning trees, and they proved there are at least three edge-disjoint rainbow spanning trees. Akbari and Alipour [1] showed that each K_n that is an edge-colored such that no color appears more than n/2 times contains at least two rainbow spanning trees.

Our main result is

Theorem 1. Let G be an edge-colored copy of K_n , where each color appears on at most n/2 edges and $n \ge 1,000,000$. The graph G contains at least $\lfloor n/(1000 \log n) \rfloor$ edge-disjoint rainbow spanning trees.

The strategy of the proof of Theorem 1 is to randomly construct $\lfloor n/(1000 \log n) \rfloor$ edge-disjoint subgraphs of *G* such that with high probability each subgraph has a rainbow spanning tree. This result is the best known for the conjecture by Kaneko, Kano, and Suzuki. Horn [12] has shown that if the edge-coloring is a proper coloring where each color class is a perfect matching, then there are at least ϵn rainbow spanning trees for some positive constant ϵ , which is the best known result for the conjecture by Brualdi and Hollingsworth.

There have been many results in finding rainbow subgraphs in edge-colored graphs; Kano and Li [14] surveyed results and conjecture on monochromatic and rainbow (also called heterochromatic) subgraphs of an edge-colored graph. Related work includes Brualdi and Hollingsworth [5] finding rainbow spanning trees and forests in edge-colored complete bipartite graphs, and Constantine [8] showing that for certain values of *n* there exists a proper coloring of K_n such that the edges of K_n decompose into isomorphic rainbow spanning trees.

The existence of rainbow cycles has also been studied. Albert, Frieze, and Reed [2] showed that for an edge-colored K_n where each color appears at most $\lceil cn \rceil$ times then there is a rainbow hamiltonian cycle if c < 1/64. (Rue (see [11]) provided a correction to the constant.) Frieze and Krivelevich [11] proved that there exists a *c* such that if each color appears at most $\lceil cn \rceil$ times, then there are rainbow cycles of all lengths.

This paper is organized as follows. Section 2 includes definitions and results used throughout the paper. Sections 3–5 contain lemmas describing properties of the random subgraphs we generate. The final section provides the proof of our main result.

2. Definitions

First we establish some notation that we will use throughout the paper. Let *G* be a graph and $S \subseteq V(G)$. Let *G*[*S*] denote the induced subgraph of *G* on the vertex set *S*. Let $[S, \overline{S}]_G$ be the set of edges between *S* and \overline{S} in *G*. For natural numbers *q* and *k*, [q] represents the set $\{1, \ldots, q\}$, and $\binom{[q]}{k}$ is the collection of all *k*-subsets of [q]. Throughout the paper the logarithm function used has base *e*. One inequality that we will use often is the union sum bound which states that for events A_1, \ldots, A_r

$$\mathbb{P}\left[\bigcup_{i=1}^r A_i\right] \leq \sum_{i=1}^r \mathbb{P}\left[A_i\right].$$

Throughout the rest of the paper let *G* be an edge-colored copy of K_n , where the set of edges of each color has size at most n/2, and $n \ge 1,000,000$. We assume *G* is colored with *q* colors, where $n-1 \le q \le {n \choose 2}$. Let C_j be the set of edges of color *j* in *G*. Define $c_j = |C_j|$, and without loss of generality assume $c_1 \ge c_2 \ge \cdots \ge c_q$. Note that $1 \le c_j \le n/2$ for all *j*.

Let $t = \lfloor n/(C \log n) \rfloor$ where C = 1000. Note that we have not optimized the constant *C*, and it can be slightly improved at the cost of more calculation. Since $\frac{n}{C \log n} - 1 \le t \le \frac{n}{C \log n}$ we have

$$\frac{-1}{t} \le \frac{-C\log n}{n} \quad \text{and} \quad \frac{C\log n}{n} \le \frac{1}{t} \le \left(\frac{n}{n-C\log n}\right)\frac{C\log n}{n}.$$
 (*)

We will frequently use these bounds on *t*.

Download English Version:

https://daneshyari.com/en/article/4653285

Download Persian Version:

https://daneshyari.com/article/4653285

Daneshyari.com