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a b s t r a c t

Let G be an edge-colored copy of Kn, where each color appears on
at most n/2 edges (the edge-coloring is not necessarily proper). A
rainbow spanning tree is a spanning tree ofGwhere each edge has a
different color. Brualdi and Hollingsworth (1996) conjectured that
every properly edge-colored Kn (n ≥ 6 and even) using exactly
n−1 colors has n/2 edge-disjoint rainbow spanning trees, and they
proved there are at least two edge-disjoint rainbow spanning trees.
Kaneko et al. (2003) strengthened the conjecture to include any
proper edge-coloring of Kn, and they proved there are at least three
edge-disjoint rainbow spanning trees. Akbari and Alipour (2007)
showed that eachKn that is edge-colored such that no color appears
more than n/2 times contains at least two rainbow spanning trees.

We prove that if n ≥ 1,000,000, then an edge-colored Kn,
where each color appears on at most n/2 edges, contains at least
⌊n/(1000 log n)⌋ edge-disjoint rainbow spanning trees.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Let G be an edge-colored copy of Kn, where each color appears on at most n/2 edges (the edge-
coloring is not necessarily proper). A rainbow spanning tree is a spanning tree ofG such that each edge
has a different color. Brualdi and Hollingsworth [4] conjectured that every properly edge-colored Kn
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(n ≥ 6 and even) where each color class is a perfect matching has a decomposition of the edges of
Kn into n/2 edge-disjoint rainbow spanning trees. They proved there are at least two edge-disjoint
rainbow spanning trees in such an edge-colored Kn. Kaneko, Kano, and Suzuki [13] strengthened the
conjecture to say that for any proper edge-coloring of Kn (n ≥ 6) contains at least ⌊n/2⌋ edge-disjoint
rainbow spanning trees, and they proved there are at least three edge-disjoint rainbow spanning trees.
Akbari and Alipour [1] showed that each Kn that is an edge-colored such that no color appears more
than n/2 times contains at least two rainbow spanning trees.

Our main result is

Theorem 1. Let G be an edge-colored copy of Kn, where each color appears on at most n/2 edges and
n ≥ 1,000,000. The graph G contains at least ⌊n/(1000 log n)⌋ edge-disjoint rainbow spanning trees.

The strategy of the proof of Theorem 1 is to randomly construct ⌊n/(1000 log n)⌋ edge-disjoint
subgraphs of G such that with high probability each subgraph has a rainbow spanning tree. This result
is the best known for the conjecture by Kaneko, Kano, and Suzuki. Horn [12] has shown that if the
edge-coloring is a proper coloring where each color class is a perfect matching, then there are at
least ϵn rainbow spanning trees for some positive constant ϵ, which is the best known result for the
conjecture by Brualdi and Hollingsworth.

There have been many results in finding rainbow subgraphs in edge-colored graphs; Kano and
Li [14] surveyed results and conjecture onmonochromatic and rainbow (also called heterochromatic)
subgraphs of an edge-colored graph. Related work includes Brualdi and Hollingsworth [5] finding
rainbow spanning trees and forests in edge-colored complete bipartite graphs, and Constantine [8]
showing that for certain values of n there exists a proper coloring of Kn such that the edges of Kn
decompose into isomorphic rainbow spanning trees.

The existence of rainbow cycles has also been studied. Albert, Frieze, and Reed [2] showed that for
an edge-colored Kn where each color appears at most ⌈cn⌉ times then there is a rainbow hamiltonian
cycle if c < 1/64. (Rue (see [11]) provided a correction to the constant.) Frieze and Krivelevich [11]
proved that there exists a c such that if each color appears at most ⌈cn⌉ times, then there are rainbow
cycles of all lengths.

This paper is organized as follows. Section 2 includes definitions and results used throughout the
paper. Sections 3–5 contain lemmas describing properties of the random subgraphs we generate. The
final section provides the proof of our main result.

2. Definitions

First we establish some notation that we will use throughout the paper. Let G be a graph and
S ⊆ V (G). Let G[S] denote the induced subgraph of G on the vertex set S. Let [S, S]G be the set of
edges between S and S in G. For natural numbers q and k, [q] represents the set {1, . . . , q}, and


[q]
k


is the collection of all k-subsets of [q]. Throughout the paper the logarithm function used has base e.
One inequality that we will use often is the union sum bound which states that for events A1, . . . , Ar
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Throughout the rest of the paper let G be an edge-colored copy of Kn, where the set of edges of
each color has size at most n/2, and n ≥ 1,000,000. We assume G is colored with q colors, where
n−1 ≤ q ≤

n
2


. Let Cj be the set of edges of color j in G. Define cj = |Cj|, andwithout loss of generality

assume c1 ≥ c2 ≥ · · · ≥ cq. Note that 1 ≤ cj ≤ n/2 for all j.
Let t = ⌊n/(C log n)⌋ where C = 1000. Note that we have not optimized the constant C , and it can

be slightly improved at the cost of more calculation. Since n
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We will frequently use these bounds on t .
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