Heaps and two exponential structures

CrossMark

Emma Yu Jin
Institut für Diskrete Mathematik und Geometrie, TU Wien, Wiedner Hauptstr. 8-10, 1040 Vienna, Austria

A R T I CLE I N F O

Article history:

Received 1 July 2014
Accepted 10 December 2015
Available online 29 December 2015

A B S TRACT

Take $\mathrm{Q}=\left(\mathrm{Q}_{1}, \mathrm{Q}_{2}, \ldots\right)$ to be an exponential structure and $M(n)$ to be the number of minimal elements of Q_{n} where $M(0)=1$. Then a sequence of numbers $\left\{r_{n}\left(\mathrm{Q}_{n}\right)\right\}_{n \geq 1}$ is defined by the equation

$$
\sum_{n \geq 1} r_{n}\left(\mathrm{O}_{n}\right) \frac{z^{n}}{n!M(n)}=-\log \left(\sum_{n \geq 0}(-1)^{n} \frac{z^{n}}{n!M(n)}\right)
$$

Let $\overline{\mathrm{Q}}_{n}$ denote the poset Q_{n} with a $\hat{0}$ adjoined and let $\hat{1}$ denote the unique maximal element in the poset Q_{n}. Furthermore, let $\mu_{\mathrm{Q}_{n}}$ be the Möbius function on the poset $\overline{\mathrm{Q}}_{n}$. Stanley proved that $r_{n}\left(\mathrm{Q}_{n}\right)=(-1)^{n} \mu_{\mathrm{Q}_{n}}(\hat{0}, \hat{1})$. This implies that the numbers $r_{n}\left(\mathrm{Q}_{n}\right)$ are integers. In this paper, we study the cases $\mathrm{Q}_{n}=\Pi_{n}^{(r)}$ and $\mathrm{Q}_{n}=\mathrm{Q}_{n}^{(r)}$ where $\Pi_{n}^{(r)}$ and $\mathrm{Q}_{n}^{(r)}$ are posets, respectively, of set partitions of $[r n]$ whose block sizes are divisible by r and of r-partitions of [n]. In both cases we prove that $r_{n}\left(\Pi_{n}^{(r)}\right)$ and $r_{n}\left(\mathrm{Q}_{n}^{(r)}\right)$ enumerate the pyramids by applying the Cartier-Foata monoid identity and further prove that $r_{n}\left(\Pi_{n}^{(r)}\right)$ is the generalized Euler number $E_{r n-1}$ and that $r_{n}\left(\mathrm{O}_{n}^{(2)}\right)$ is the number of complete non-ambiguous trees of size $2 n-1$ by bijections. This gives a new proof of Welker's theorem that $r_{n}\left(\Pi_{n}^{(r)}\right)=E_{r n-1}$ and implies the construction of r-dimensional complete non-ambiguous trees. As a bonus of applying the theory of heaps, we establish a bijection between the set of complete non-ambiguous forests and the set of pairs of permutations with no common rise. This answers an open question raised by Aval et al.
© 2015 Elsevier Ltd. All rights reserved.

[^0]
1. Introduction

We denote by Π_{n} the poset of all the set partitions of [n] ordered by refinement, that is, define $\sigma \leq \pi$ if every block of σ is contained in a block of π. Let $\rho \in \Pi_{n}$ be the minimal element of Π_{n}, i.e., $\rho=\{\{1\},\{2\}, \ldots,\{n\}\}$. Consider an interval $[\sigma, \pi]$ in the poset Π_{n} and suppose $\pi=\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}$ and B_{i} is partitioned into λ_{i} blocks in σ. Then we have $[\sigma, \pi] \cong \Pi_{\lambda_{1}} \times \Pi_{\lambda_{2}} \times \cdots \times \Pi_{\lambda_{k}}$. For the particular case $\sigma=\rho$, we have $[\rho, \pi] \cong \Pi_{\left|B_{1}\right|} \times \Pi_{\left|B_{2}\right|} \times \cdots \times \Pi_{\left|B_{k}\right|}$. If we set $a_{j}=\left|\left\{i: \lambda_{i}=j\right\}\right|$ for every j, then we can rewrite

$$
\begin{equation*}
[\sigma, \pi] \cong \Pi_{1}^{a_{1}} \times \Pi_{2}^{a_{2}} \times \cdots \times \Pi_{n}^{a_{n}} . \tag{1.1}
\end{equation*}
$$

The poset Π_{n} of set partitions is the archetype of exponential structures. The concept of exponential structure was introduced by Stanley as a generalization of compositional and exponential formulas; see $[6,7,3]$. An exponential structure is a sequence $Q=\left(O_{1}, Q_{2}, \ldots\right)$ of posets such that:
(1) for each $n \in \mathbb{N}^{+}$, the poset Q_{n} is finite, has a unique maximal element $\hat{1}$ and every maximal chain of Q_{n} has n elements.
(2) for $\pi \in \mathrm{Q}_{n}$, the interval $[\pi, \hat{1}]$ is isomorphic to the poset Π_{k} of set partitions for some k.
(3) the subposet $\Lambda_{\pi}=\left\{\sigma \in \mathrm{Q}_{n}: \sigma \leq \pi\right\}$ of Q_{n} is isomorphic to $\mathrm{Q}_{1}^{a_{1}} \times \mathrm{Q}_{2}^{a_{2}} \times \cdots \times \mathrm{Q}_{n}^{a_{n}}$ for unique $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{N}$.
Suppose $\pi \in \mathrm{Q}_{n}$ and ρ is a minimal element of Q_{n} satisfying $\rho \leq \pi$. By (1) and (2), we obtain that $[\rho, \hat{1}] \cong \Pi_{n}$. It follows from (1.1) that $[\rho, \pi] \cong \Pi_{1}^{a_{1}} \times \Pi_{2}^{a_{2}} \times \cdots \times \Pi_{n}^{a_{n}}$ for unique $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{N}$ satisfying $\sum_{i} i a_{i}=n$ and $\sum_{i} a_{i}=|\pi|$. In particular, if ρ_{1} is another minimal element of Q_{n} satisfying $\rho_{1} \leq \pi$, then we have $\left[\rho_{1}, \pi\right] \cong[\rho, \pi]$.

We will define the numbers $r_{n}\left(\mathrm{O}_{n}\right)$ associated with an exponential structure $\mathrm{Q}=\left(\mathrm{Q}_{1}, \mathrm{Q}_{2}, \ldots\right)$ in the following way. Let $M(n)$ be the number of minimal elements of Q_{n} for $n \geq 1$ and set $M(0)=1$. Then a sequence of numbers $\left\{r_{n}\left(\mathrm{O}_{n}\right)\right\}_{n \geq 1}$ is defined by the equation

$$
\begin{equation*}
\sum_{n \geq 1} r_{n}\left(\mathrm{O}_{n}\right) \frac{z^{n}}{n!M(n)}=-\log \left(\sum_{n \geq 0}(-1)^{n} \frac{z^{n}}{n!M(n)}\right) . \tag{1.2}
\end{equation*}
$$

Let $\overline{\mathrm{Q}}_{n}$ denote the poset Q_{n} with a $\hat{0}$ adjoined and let $\hat{1}$ denote the unique maximal element in the poset Q_{n}. Furthermore, let $\mu_{\mathrm{Q}_{n}}$ be the Möbius function on the poset $\overline{\mathrm{Q}}_{n}$. Then from Chapter 5.5 of [7], we know

$$
\begin{equation*}
\sum_{n \geq 1} \mu_{\mathrm{Q}_{n}}(\hat{0}, \hat{1}) \frac{z^{n}}{n!M(n)}=-\log \left(\sum_{n \geq 0} \frac{z^{n}}{n!M(n)}\right), \tag{1.3}
\end{equation*}
$$

and thus, $r_{n}\left(\mathrm{Q}_{n}\right)=(-1)^{n} \mu_{\mathrm{O}_{n}}(\hat{0}, \hat{1})$. This implies that the numbers $r_{n}\left(\mathrm{O}_{n}\right)$ are integers for any exponential structure $\mathrm{Q}=\left(\mathrm{Q}_{1}, \mathrm{Q}_{2}, \ldots\right)$. In the case $\mathrm{Q}_{n}=\Pi_{n}$, the number $M(n)$ of minimal elements in the poset Π_{n} is 1 . It follows immediately from (1.3) and (1.2) that $r_{n}\left(\Pi_{n}\right)=\mu_{\Pi_{n}}(\hat{0}, \hat{1})=0$ for $n \geq 2$ and $r_{1}\left(\Pi_{1}\right)=-\mu_{\Pi_{1}}(\hat{0}, \hat{1})=1$. There are three other examples of exponential structures $\mathrm{Q}=\left(\mathrm{O}_{1}, \mathrm{Q}_{2}, \ldots\right)$ in [6,7].
(1) $\mathrm{O}_{n}=\mathrm{Q}_{n}(q)$ which is the poset of direct sum decompositions of the n-dimensional vector space $V_{n}(q)$ over the finite field \mathbb{F}_{q}. Let $V_{n}(q)$ be an n-dimensional vector space over the finite field \mathbb{F}_{q}. Let $\mathrm{Q}_{n}(q)$ consist of all the collections $\left\{W_{1}, W_{2}, \ldots, W_{k}\right\}$ of subspaces of $V_{n}(q)$ such that dim $W_{i}>0$ for all i, and such that $V_{n}(q)=W_{1} \oplus W_{2} \oplus \cdots \oplus W_{k}$ (direct sum). An element of $\mathrm{Q}_{n}(q)$ is called a direct sum decomposition of $V_{n}(q)$. We order $\mathrm{Q}_{n}(q)$ by refinement, i.e., $\left\{W_{1}, W_{2}, \ldots, W_{k}\right\} \leq$ $\left\{W_{1}^{\prime}, W_{2}^{\prime}, \ldots, W_{j}^{\prime}\right\}$ if each W_{r} is contained in some W_{s}^{\prime}.
(2) $\mathrm{Q}_{n}=\Pi_{n}^{(r)}$ which is the poset of set partitions of $[r n]$ whose block sizes are divisible by r.
(3) $\mathrm{Q}_{n}=\mathrm{Q}_{n}^{(r)}$ which is the poset of r-partitions of [n]. The definition of r-partition will be given in Section 4.

https://daneshyari.com/en/article/4653299

Download Persian Version:
https://daneshyari.com/article/4653299

Daneshyari.com

[^0]: E-mail addresses: jin@cs.uni-kl.de, yu.jin@tuwien.ac.at.
 http://dx.doi.org/10.1016/j.ejc.2015.12.007
 0195-6698/© 2015 Elsevier Ltd. All rights reserved.

