European Journal of Combinatorics 54 (2016) 87-102

Contents lists available at ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

Heaps and two exponential structures

Emma Yu Jin

Institut für Diskrete Mathematik und Geometrie, TU Wien, Wiedner Hauptstr. 8-10, 1040 Vienna, Austria

ARTICLE INFO

Article history: Received 1 July 2014 Accepted 10 December 2015 Available online 29 December 2015

ABSTRACT

Take $Q = (Q_1, Q_2, ...)$ to be an exponential structure and M(n) to be the number of minimal elements of Q_n where M(0) = 1. Then a sequence of numbers $\{r_n(Q_n)\}_{n>1}$ is defined by the equation

$$\sum_{n\geq 1} r_n(\mathbf{Q}_n) \frac{z^n}{n!\,M(n)} = -\log\left(\sum_{n\geq 0} (-1)^n \frac{z^n}{n!\,M(n)}\right).$$

Let \bar{Q}_n denote the poset Q_n with a $\hat{0}$ adjoined and let $\hat{1}$ denote the unique maximal element in the poset Q_n . Furthermore, let μ_{Q_n} be the Möbius function on the poset \bar{Q}_n . Stanley proved that $r_n(\mathbf{Q}_n) = (-1)^n \mu_{\mathbf{Q}_n}(\hat{\mathbf{0}}, \hat{\mathbf{1}})$. This implies that the numbers $r_n(\mathbf{Q}_n)$ are integers. In this paper, we study the cases $\mathbf{Q}_n = \Pi_n^{(r)}$ and $Q_n = Q_n^{(r)}$ where $\Pi_n^{(r)}$ and $Q_n^{(r)}$ are posets, respectively, of set partitions of [rn] whose block sizes are divisible by r and of *r*-partitions of [*n*]. In both cases we prove that $r_n(\Pi_n^{(r)})$ and $r_n(\mathbf{Q}_n^{(r)})$ enumerate the pyramids by applying the Cartier–Foata monoid identity and further prove that $r_n(\Pi_n^{(r)})$ is the generalized Euler number E_{rn-1} and that $r_n(Q_n^{(2)})$ is the number of complete non-ambiguous trees of size 2n - 1 by bijections. This gives a new proof of Welker's theorem that $r_n(\Pi_n^{(r)}) = E_{m-1}$ and implies the construction of *r*-dimensional complete non-ambiguous trees. As a bonus of applying the theory of heaps, we establish a bijection between the set of complete non-ambiguous forests and the set of pairs of permutations with no common rise. This answers an open question raised by Aval et al.

© 2015 Elsevier Ltd. All rights reserved.

European Journal of Combinatorics

E-mail addresses: jin@cs.uni-kl.de, yu.jin@tuwien.ac.at.

http://dx.doi.org/10.1016/j.ejc.2015.12.007 0195-6698/© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

We denote by Π_n the poset of all the set partitions of [n] ordered by refinement, that is, define $\sigma \leq \pi$ if every block of σ is contained in a block of π . Let $\rho \in \Pi_n$ be the minimal element of Π_n , i.e., $\rho = \{\{1\}, \{2\}, \ldots, \{n\}\}$. Consider an interval $[\sigma, \pi]$ in the poset Π_n and suppose $\pi = \{B_1, B_2, \ldots, B_k\}$ and B_i is partitioned into λ_i blocks in σ . Then we have $[\sigma, \pi] \cong \Pi_{\lambda_1} \times \Pi_{\lambda_2} \times \cdots \times \Pi_{\lambda_k}$. For the particular case $\sigma = \rho$, we have $[\rho, \pi] \cong \Pi_{|B_1|} \times \Pi_{|B_2|} \times \cdots \times \Pi_{|B_k|}$. If we set $a_j = |\{i : \lambda_i = j\}|$ for every j, then we can rewrite

$$[\sigma,\pi] \cong \Pi_1^{a_1} \times \Pi_2^{a_2} \times \dots \times \Pi_n^{a_n}.$$
(1.1)

The poset Π_n of set partitions is the archetype of exponential structures. The concept of exponential structure was introduced by Stanley as a generalization of compositional and exponential formulas; see [6,7,3]. An *exponential structure* is a sequence $\Omega = (\Omega_1, \Omega_2, ...)$ of posets such that:

- (1) for each $n \in \mathbb{N}^+$, the poset Q_n is finite, has a unique maximal element $\hat{1}$ and every maximal chain of Q_n has *n* elements.
- (2) for $\pi \in Q_n$, the interval $[\pi, \hat{1}]$ is isomorphic to the poset Π_k of set partitions for some *k*.
- (3) the subposet $\Lambda_{\pi} = \{ \sigma \in Q_n : \sigma \leq \pi \}$ of Q_n is isomorphic to $Q_1^{a_1} \times Q_2^{a_2} \times \cdots \times Q_n^{a_n}$ for unique $a_1, a_2, \ldots, a_n \in \mathbb{N}$.

Suppose $\pi \in Q_n$ and ρ is a minimal element of Q_n satisfying $\rho \leq \pi$. By (1) and (2), we obtain that $[\rho, \hat{1}] \cong \Pi_n$. It follows from (1.1) that $[\rho, \pi] \cong \Pi_1^{a_1} \times \Pi_2^{a_2} \times \cdots \times \Pi_n^{a_n}$ for unique $a_1, a_2, \ldots, a_n \in \mathbb{N}$ satisfying $\sum_i ia_i = n$ and $\sum_i a_i = |\pi|$. In particular, if ρ_1 is another minimal element of Q_n satisfying $\rho_1 \leq \pi$, then we have $[\rho_1, \pi] \cong [\rho, \pi]$.

We will define the numbers $r_n(Q_n)$ associated with an exponential structure $Q = (Q_1, Q_2, ...)$ in the following way. Let M(n) be the number of minimal elements of Q_n for $n \ge 1$ and set M(0) = 1. Then a sequence of numbers $\{r_n(Q_n)\}_{n\ge 1}$ is defined by the equation

$$\sum_{n \ge 1} r_n(\mathbf{Q}_n) \frac{z^n}{n! \, M(n)} = -\log\left(\sum_{n \ge 0} (-1)^n \frac{z^n}{n! \, M(n)}\right). \tag{1.2}$$

Let \bar{Q}_n denote the poset Q_n with a \hat{O} adjoined and let $\hat{1}$ denote the unique maximal element in the poset Q_n . Furthermore, let μ_{Q_n} be the Möbius function on the poset \bar{Q}_n . Then from Chapter 5.5 of [7], we know

$$\sum_{n \ge 1} \mu_{Q_n}(\hat{0}, \hat{1}) \frac{z^n}{n! M(n)} = -\log\left(\sum_{n \ge 0} \frac{z^n}{n! M(n)}\right),\tag{1.3}$$

and thus, $r_n(Q_n) = (-1)^n \mu_{Q_n}(\hat{0}, \hat{1})$. This implies that the numbers $r_n(Q_n)$ are integers for any exponential structure $Q = (Q_1, Q_2, ...)$. In the case $Q_n = \Pi_n$, the number M(n) of minimal elements in the poset Π_n is 1. It follows immediately from (1.3) and (1.2) that $r_n(\Pi_n) = \mu_{\Pi_n}(\hat{0}, \hat{1}) = 0$ for $n \ge 2$ and $r_1(\Pi_1) = -\mu_{\Pi_1}(\hat{0}, \hat{1}) = 1$. There are three other examples of exponential structures $Q = (Q_1, Q_2, ...)$ in [6,7].

- (1) $Q_n = Q_n(q)$ which is the poset of direct sum decompositions of the *n*-dimensional vector space $V_n(q)$ over the finite field \mathbb{F}_q . Let $V_n(q)$ be an *n*-dimensional vector space over the finite field \mathbb{F}_q . Let $Q_n(q)$ consist of all the collections $\{W_1, W_2, \ldots, W_k\}$ of subspaces of $V_n(q)$ such that dim $W_i > 0$ for all *i*, and such that $V_n(q) = W_1 \oplus W_2 \oplus \cdots \oplus W_k$ (direct sum). An element of $Q_n(q)$ is called a *direct sum decomposition* of $V_n(q)$. We order $Q_n(q)$ by refinement, i.e., $\{W_1, W_2, \ldots, W_k\} \le \{W'_1, W'_2, \ldots, W'_i\}$ if each W_r is contained in some W'_s .
- (2) $Q_n = \Pi_n^{(r)}$ which is the poset of set partitions of [rn] whose block sizes are divisible by r.
- (3) $Q_n = Q_n^{(r)}$ which is the poset of *r*-partitions of [*n*]. The definition of *r*-partition will be given in Section 4.

Download English Version:

https://daneshyari.com/en/article/4653299

Download Persian Version:

https://daneshyari.com/article/4653299

Daneshyari.com