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a b s t r a c t

A well-known conjecture in analytic number theory states that for
every pair of sets X, Y ⊂ Z/pZ, each of size at least logC p (for some
constant C) we have that the number of pairs (x, y) ∈ X × Y such
that x + y is a quadratic residue modulo p differs from 1

2 |X ||Y | by
o (|X ||Y |). We address the probabilistic analogue of this question,
that is for every fixed δ > 0, given a finite group G and A ⊂ G a
random subset of density 1

2 , we prove thatwith high probability for
all subsets |X |, |Y | > log2+δ

|G|, the number of pairs (x, y) ∈ X × Y
such that xy ∈ A differs from 1

2 |X ||Y | by o (|X ||Y |).
© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A folklore result in analytic number theory states that if we let Q ⊂ Z/pZ be the set of quadratic
residues modulo a prime p, then for any function w : N → R tending to infinity and any pair of sets
X, Y ⊂ Z/pZof size at leastw(p)

√
p, the number of pairs (x, y) ∈ X×Y such that x+y ∈ Q differs from

1
2 |X | |Y | by o (|X | |Y |). Here, the rate of convergence implied by the o-notation depends only on w.

The proof of this is relatively simple. We refer the reader to Section 2 for the notation used below.
First of all, after setting 1X ∗ 1Y (x) = Ez∈Z/pZ1X (z)1Y (x − z), it is easy to see that the statement one
wants to prove is equivalent to requiring thatp 

x∈Z/pZ

1X ∗ 1Y (x)χ(x)

 = o(|X | |Y |),

where χ is the quadratic character (i.e. χ(a) = ( a
p )). For r ∈ Z/pZ and a function f : Z/pZ →

R, we define the corresponding Fourier coefficient byf (r) = Ex∈Z/pZf (x)e2π ixr/p. Using standard
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formulas from Fourier analysis, the standard estimate for Gauss sums (see e.g. [9, Section 3.5]), and
Cauchy–Schwarz inequality, we havep 

x∈Z/pZ

1X ∗ 1Y (x)χ(x)

 =

p2 
r∈Z/pZ

1X (r)1Y (r)̄χ(r)

 6 p3/2


r∈Z/pZ

|1X (r)| |1Y (r)|

6
√
p(|X | |Y |)1/2,

and this proves the claim. Although this argument was quite straightforward, no significant
improvement (in terms of lower bounds for |X | and |Y |) is known, although it is widely believed to
be true even for sets X and Y of sizes at least logC p for some constant C—a conjecture known in some
literature [5] as the Paley graph conjecture.

Given that the set of quadratic residues is believed to have many properties in common with a
random set of the same size, it is natural to ask whether the statement above is true if we replace Q
with a genuinely random set. In this paper we give the positive answer to this question, that is we
prove the following theorem.

Theorem 1. Let G be a group of size N and w : N → R some function that tends to infinity. Let A ⊂ G
be a random subset obtained by putting every element of G into A independently with probability 1

2 . Then
the following holds with probability 1−o(1): for all sets X, Y ⊂ G, |X |, |Y | > w(N) log2 N, the number of
pairs (x, y) ∈ X × Y such that xy ∈ A differs from 1

2 |X | |Y | by o (|X | |Y |). The rate of convergence implied
by the o-notation depends only on w.

If for a pair of subsets X, Y ⊂ G we have that the number of pairs (x, y) ∈ X × Y such that
xy ∈ A differs from 1

2 |X | |Y | by ϵ|X | |Y |, we will say that it is ϵ-extracted by the set A. If all the pairs
of subsets of size as in the previous theorem are ϵ-extracted by the set A, we will say that A is an ϵ-
extractor. Theorem 1 shows, in this terminology, that a random subset of G is o(1)-extractor with high
probability. The reason for this terminology will be explained in Section 6.

A Fourier approach, as above but using Chernoff-type estimates for the Fourier coefficients instead
of Gauss sum estimates, suffices to prove Theorem 1 when, say, |X |, |Y | > N0.51. Unfortunately, this
argument does not work for sets of size smaller than

√
N .

In Section 3 we will present a different argument that will enable us to prove Theorem 1. A very
important part of the argument is Proposition 4, which we prove in Section 4. Section 5 is devoted for
proving a bound on the sizes of X and Y for which Theorem 1 does not hold. Namely, we prove that
Theorem 1 does not hold if we consider sets X and Y of size at least C logN log logN , for arbitrary large
constant C > 0. Finally, in Section 6 we give some open problems left after this paper and explain the
connection with randomness extractors.

Before moving on to the proof of the main theorem, let us also mention that one could ask and
answer the analogous question in the Erdős–Rényi setting, that is one can easily prove the following
folklore theorem.

Theorem 2. Let G = (V , E) be a graph sampled as in the Erdős–Rényi model G(N, 1
2 ), that is G has a

vertex set V of size N and contains each possible edge with probability 1
2 , and these choices are all made

independently. Let w : N → R be some function that tends to infinity. Then the following holds with
probability 1 − o(1): for all sets X, Y ⊂ V , |X |, |Y | > w(N) logN, 1

2 + o(1) of all the possible edges
connecting an element of X and an element of Y are contained in E. The rate of convergence implied by
the o-notation depends only on w.

2. Notation

Althoughmost of the notation and conventions were implicitly introduced in the previous section,
we include them here for the reader’s convenience. The logarithm with base 2 will be denoted by
log2, and natural logarithm by log. We will use the standard O-notation. To be concrete, for functions
f , g : N → R we will write f (n) = O(g(n)) and |f (n)| ≪ g(n) if |f (n)| 6 Cg(n) for some constant
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