On a generalization of a theorem of Sárközy and Sós

Yong-Gao Chen ${ }^{\text {a }}$, Min Tang ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, PR China
${ }^{\mathrm{b}}$ School of Mathematics and Computer Science, Anhui Normal University, Wuhu 241003, PR China

ARTICLE INFO

Article history:

Received 21 July 2015
Accepted 30 December 2015
Available online 28 January 2016

Abstract

Let \mathbb{N}_{0} be the set of all nonnegative integers and $\ell \geq 2$ be a fixed integer. For $A \subseteq \mathbb{N}_{0}$ and $n \in \mathbb{N}_{0}$, let $r_{\ell}^{\prime}(A, n)$ denote the number of solutions of $a_{1}+\cdots+a_{\ell}=n$ with $a_{1}, \ldots, a_{\ell} \in A$ and $a_{1} \leq \cdots \leq a_{\ell}$. Let k be a fixed positive integer. In this paper, we prove that, for any given distinct positive integers $u_{i}(1 \leq i \leq k)$ and positive rational numbers $\alpha_{i}(1 \leq i \leq k)$ with $\alpha_{1}+\cdots+\alpha_{k}=1$, there are infinitely many sets $A \subseteq \mathbb{N}_{0}$ such that $r_{\ell}^{\prime}(A, n) \geq 1$ for all $n \geq 0$ and the set of n with $r_{\ell}^{\prime}(A, n)=u_{i}$ has density α_{i} for all $1 \leq i \leq k$.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Let \mathbb{N} be the set of all positive integers and \mathbb{N}_{0} be the set of all nonnegative integers. Let $\ell \geq 2$ be a fixed integer. For $A \subseteq \mathbb{N}_{0}, n \in \mathbb{N}_{0}$, and $N \in \mathbb{N}$, let

$$
\begin{aligned}
& r_{\ell}(A, n)=\sharp\left\{\left(a_{1}, a_{2}, \ldots, a_{\ell}\right) \in A^{\ell}: a_{1}+a_{2}+\cdots+a_{\ell}=n\right\}, \\
& r_{\ell}^{\prime}(A, n)=\sharp\left\{\left(a_{1}, a_{2}, \ldots, a_{\ell}\right) \in A^{\ell}: a_{1}+a_{2}+\cdots+a_{\ell}=n, a_{1} \leq a_{2} \leq \cdots \leq a_{\ell}\right\}, \\
& f_{u}^{(\ell)}(A)=\left\{n \in \mathbb{N}: r_{\ell}^{\prime}(A, n)=u\right\}, \\
& f_{u}^{(\ell)}(A, N)=\sharp\left\{n \leq N: r_{\ell}^{\prime}(A, n)=u\right\} .
\end{aligned}
$$

The subset A of \mathbb{N}_{0} is called a basis of order ℓ if $r_{\ell}^{\prime}(A, n) \geq 1$ for all $n \geq 0$.
The well-known Erdős-Turán conjecture [3] asserts that if A is a basis of order 2, then $r_{2}(A, n)$ is unbounded. It is also well known by now that the counterpart of the Erdős-Turán conjecture does

[^0]not hold in many families of semigroups. Unfortunately, this conjecture itself is still a major unsolved problem in additive number theory. Several mathematicians improved the known lower bound of $\lim \sup _{n \rightarrow \infty} r_{2}(A, n)$ for all bases A. In 2003, Grekos et al. [4] proved that if A is a basis of order 2, then $\lim \sup _{n \rightarrow \infty} r_{2}(A, n) \geq 6$. In 2005, Borwein et al. [1] improved 6 to 8. In 2013, Konstantoulas [5] proved that, if the upper density of the set of numbers not represented as sums of two elements of A is less than $1 / 10$, then $\lim \sup _{n \rightarrow \infty} r_{2}(A, n) \geq 6$.

In 2012, the first author of this paper [2] proved that there exists a basis A of order 2 of \mathbb{N} such that the set of n with $r_{2}(A, n)=2$ has density one. In 2013, Yang [8] generalized Chen's method to prove that for any integer $k \geq 2$, there exists a basis A of order k such that the set of n with $r_{k}(A, n)=k$! has density one. The second author of this paper [7] developed Chen and Yang's method of proof to establish the following more general result: For any fixed integers $k \geq 2$ and $u \geq 1$, there exists a basis A of order k such that $r_{k}(A, n) \geq 1$ for all $n \geq 0$ and the set of n with $r_{k}(A, n)=k!u$ has density one. In 1997, Sárközy and Sós [6] considered a similar problem and they showed that for every finite set $U \in \mathbb{N}$ there is a set A such that, apart from a "thin" set of integers $n, r_{2}^{\prime}(A, n)$ assumes only the prescribed values $u \in \mathbb{U}$ with about the same frequency. In detail, they proved the following result.

Theorem A. Let $k \in \mathbb{N}$ and let $u_{1}<u_{2}<\cdots<u_{k}$ be positive integers. Then there is an infinite set $A \subset \mathbb{N}_{0}$ such that writing

$$
B=\mathbb{N} \backslash\left(\cup_{i=1}^{k} f_{u_{i}}^{(2)}(A)\right)
$$

we have

$$
s_{u_{i}}^{(2)}(A, N)=\frac{N}{k}+O\left(N^{\alpha}\right)
$$

and

$$
B(N)=O\left(N^{\alpha}\right)
$$

where $\alpha=\log 3 / \log 4$ and $B(N)=|B \cap[1, N]|$.
Let $r_{i} \in \mathbb{Q}, 1 \leq i \leq k$ with $\sum_{i=1}^{k} r_{i}=1$. Sárközy and Sós (See [6, Remark 4.1]) remarked that using the same idea as in the proof of Theorem A, they can prove the existence of an infinite set $A \subset \mathbb{N}_{0}$ for which

$$
f_{u_{i}}^{(2)}(A, N)=r_{i} N+O\left(N^{\alpha}\right), \quad 1 \leq i \leq k
$$

with some $0<\alpha<1$.
In this paper, we extend Sárközy and Sós's result to $\ell \geq 2$. We find that it is difficult to handle the cases $\ell \geq 3$ by using Sárközy and Sós's method. The method used here is different from Sárközy and Sós's method.

Theorem 1. Let $k, \ell \in \mathbb{N}$ with $\ell \geq 2$ and let $u_{1}<u_{2}<\cdots<u_{k}$ be positive integers. Let $\alpha_{i}(1 \leq i \leq k)$ be positive rational numbers with $\alpha_{1}+\cdots+\alpha_{k}=1$. Then there are infinitely many bases A of order ℓ such that

$$
\begin{equation*}
f_{u_{i}}^{(\ell)}(A, N)=\alpha_{i} N+O\left(N^{\alpha}\right), \quad 1 \leq i \leq k, \tag{1}
\end{equation*}
$$

where $\alpha=\alpha(A)$ with $0<\alpha<1$.

$$
\text { Let } B=\mathbb{N} \backslash\left(\cup_{i=1}^{k} f_{u_{i}}^{(\ell)}(A)\right) \text {. If }(1) \text { holds, then } B(N)=O\left(N^{\alpha}\right) .
$$

2. Proofs

$$
\begin{aligned}
\text { For } X_{i} & \subseteq \mathbb{Z}(1 \leq i \leq t) \text {, let } \\
X_{1} & +\cdots+X_{t}=\left\{x_{1}+\cdots+x_{t}: x_{i} \in X_{i}(1 \leq i \leq t)\right\} .
\end{aligned}
$$

For $X \subseteq \mathbb{Z}$ and $n \in \mathbb{N}$, let

$$
n \times X=\{n x: x \in X\}
$$

https://daneshyari.com/en/article/4653309

Download Persian Version:
https://daneshyari.com/article/4653309

Daneshyari.com

[^0]: E-mail addresses: ygchen@njnu.edu.cn (Y.-G. Chen), tmzzz2000@163.com (M. Tang).
 http://dx.doi.org/10.1016/j.ejc.2015.12.016
 0195-6698/© 2016 Elsevier Ltd. All rights reserved.

