

Domination number and Laplacian eigenvalue distribution

Stephen T. Hedetniemi ^{[a](#page-0-0)}, David P. Jaco[b](#page-0-1)s ^a, Vilmar Trevisan ^b

a *School of Computing, Clemson University, Clemson, SC 29634, USA* b *Instituto de Matemática, UFRGS, 91509–900 Porto Alegre, RS, Brazil*

a r t i c l e i n f o

Article history: Received 7 April 2015 Accepted 18 November 2015 Available online 7 December 2015

A B S T R A C T

Let $m_G(I)$ denote the number of Laplacian eigenvalues of a graph *G* in an interval *I*. Our main result is that for graphs having domination number γ , $m_G[0, 1) \leq \gamma$, improving existing bounds in the literature. For many graphs, $m_G[0, 1) = \gamma$, or $m_G[0, 1) = \gamma - 1$. © 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Given $G = (V, E)$, an undirected graph with vertex set $V = \{v_1, \ldots, v_n\}$, its *adjacency matrix* $A = [a_{ij}]$ is the $n \times n$ 0–1 matrix for which $a_{ij} = 1$ if and only if v_i and v_j are adjacent. The *Laplacian matrix* of *G* is defined as $L_G = D - A$, where $D = [d_{ii}]$ is the diagonal matrix in which d_{ii} = deg (v_i) , the degree of v_i . The *Laplacian spectrum* of *G* is the multi-set of eigenvalues of L_G , we number $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n = 0$. We write $\lambda_i(G)$ for λ_i if ambiguity exists. All eigenvalues in this paper are Laplacian, and we refer to $[19,20]$ $[19,20]$ for more background. Throughout, δ denotes the minimum vertex degree.

It is known that for graphs *G* of order *n*, $\lambda_1 \leq n$ with equality if and only if \bar{G} is disconnected ([\[17\]](#page--1-2), p. 148). For trees *T*, $\lambda_1 = n$ if and only if *T* is the star S_n . We are interested in the distribution of Laplacian eigenvalues of graphs. Given a real interval *I*, and graph *G*, we let *mG*(*I*) denote the number of Laplacian eigenvalues, multiplicities included, of *G* in *I*.

In [\[16\]](#page--1-3) Merris gives a lower bound for $m_G(2, n]$ in connected graphs of order $n > 2$, and [\[10\]](#page--1-4) contains many results including lower bounds for $m_G[0, 1)$ and $m_G[1, n]$. Recall that the *distance* between two vertices u and v is the number of edges in a shortest path between them, and the graph's

<http://dx.doi.org/10.1016/j.ejc.2015.11.005>

E-mail addresses: hedet@clemson.edu (S.T. Hedetniemi), dpj@clemson.edu (D.P. Jacobs), trevisan@mat.ufrgs.br (V. Trevisan).

^{0195-6698/}© 2015 Elsevier Ltd. All rights reserved.

diameter is the greatest distance between any two vertices. For trees *T* it is known (see [\[10\]](#page--1-4)) that $m_T(0, 2) \geq \lfloor \frac{\text{diam}}{2} \rfloor \leq m_T(2, n)$. Guo [\[11\]](#page--1-5) showed that in trees, $\lambda_k \leq \lceil \frac{n}{k} \rceil$ for each $k, 1 \leq k \leq n$.

A graph's *edge covering number*, denoted α_1 , is the minimum number of edges needed to cover all vertices. Its *matching number* β_1 is the maximum number of independent edges. In a graph without isolates, they are related by the Gallai formula $\alpha_1 + \beta_1 = n$. In [\[12\]](#page--1-6) Guo et al. showed (Thr. 4 and Cor. 6) that for connected graphs *G*, $m_G[1, n] \ge \alpha_1$ and $m_G[0, 1) \le \beta_1$.

A set *S* ⊆ *V* is *dominating* if every v ∈ *V* − *S* is adjacent to some member in *S*. The *domination number* γ is the minimum size of a dominating set. The corresponding decision problem for γ is known to be NP-complete, even for planar graphs [\[9\]](#page--1-7).

There is a considerable body of results that relate γ and the Laplacian spectrum. The earliest such work seems to be the 1996 paper [\[5\]](#page--1-8) in which Brand and Seifter showed that $\lambda_1 < n - \lceil \frac{\gamma - 2}{2} \rceil$, for connected graphs with $\gamma \geq 3$. Recently in [\[25\]](#page--1-9), their upper bound for λ_1 , called the *Laplacian spectral radius*, was improved by Xing and Zhou who showed $\lambda_1 \leq n - \gamma + 2$, when $2 \leq \gamma \leq n - 1$. In [\[21\]](#page--1-10) Nikiforov obtained the lower bound $\lambda_1 \geq \lceil \frac{n}{\gamma} \rceil$ when $n \geq 2$, and characterized when equality occurs.

Bounds for the second smallest Laplacian eigenvalue λ*n*−1, known as the *algebraic connectivity*, can be found in [\[1\]](#page--1-11) as well as [\[13\]](#page--1-12), where it is shown that if *G* has no isolated vertices, then $\lambda_{n-1} \leq$ $n - 2(\gamma - 1)$.

Studies relating the domination number to the Laplacian spectrum of trees include [\[8\]](#page--1-13), in which the authors determined which trees attain minimal Laplacian spectral radius, where $n = k\gamma$ and $\gamma = 2, 3, 4$. In [\[26\]](#page--1-14) it is shown that $m_T[0, 2) \le n - \gamma$ in trees *T*. The domination number also appears in spectral studies of the adjacency, signless Laplacian, and distance matrices, including [\[25\]](#page--1-9) and papers cited therein.

Our main result is that if *G* has domination number γ , then $m_G[0, 1) \leq \gamma$ and $m_G[1, n] \geq n - \gamma$. Since it is known [\[14,](#page--1-15) p. 58–59] that in isolate-free graphs, $\gamma \leq \beta_1$, and so $n - \gamma \geq n - \beta_1 = \alpha_1$, our results provide improvements over the bounds in [\[12\]](#page--1-6). Observe that we cannot say $m_T(1, n] \ge n - \gamma$, since the star S_3 has domination number 1, and Laplacian spectrum 0, 1, 3.

In the next section, we give some necessary lemmas. In Section [3](#page--1-16) we give several upper bounds on $γ$, and prove our main result. In Section [4](#page--1-17) we observe that for many graphs, $m_G[0, 1)$ and $γ$ are equal or close. We also give formulas for $m_G[0, 1)$ when G is a path or cycle, and exhibit a tree T for which m_T [0, 1) < γ . In Section [5](#page--1-18) we obtain some lower bounds. For graphs having a hamiltonian path or cycle there are at least 2 $\lfloor \frac{n}{3} \rfloor$ eigenvalues in [1, *n*], and at least $\lfloor \frac{n}{3} \rfloor$ in [3, *n*]. Using a theorem of Egawa and Ota we show that if G has order $n \geq 10$, with $\delta \geq \frac{n+2}{4}$, then nearly three-fourths of its Laplacian eigenvalues are in $[1, n]$, and nearly one-fourth are in $[4, n]$.

2. Preliminaries

In this paper, a *star Sⁿ* is the complete bipartite graph *K*1,*n*−1, and *n* ≥ 2. [Lemma 1](#page-1-0) is well-known and [Lemma 2](#page-1-1) is easy to show. [Lemma 3](#page-1-2) is the Weyl monotonicity theorem, also well-known (e.g. [\[6,](#page--1-19) Thr. 2.8.1]).

Lemma 1. The star S_n on n vertices has Laplacian spectrum 0, 1^{n-2} , n.

Lemma 2. *For graphs* $G_1 = (V, E_1)$ *and* $G_2 = (V, E_2)$ *where* $E_1 \cap E_2 = \emptyset$ *, and* $G = (V, E_1 \cup E_2)$ *, we have* $L_G = L_{G_1} + L_{G_2}$.

Lemma 3. If A and B are Hermitian matrices of order n, and B is positive semi-definite, then $\lambda_i(A + B)$ $\lambda_i(A)$, for $1 \leq i \leq n$.

Lemma 4. Let $G = (V, E)$ and $H = (V, F)$ be graphs with $F \subseteq E$. Then

(1) *for all i,* $\lambda_i(H) \leq \lambda_i(G)$; (2) *for any a, m_H*[0*, a*) $\geq m_G$ [0*, a*)*;* (3) *for any a,* $m_H[a, n] \leq m_G[a, n]$ *.*

Download English Version:

<https://daneshyari.com/en/article/4653322>

Download Persian Version:

<https://daneshyari.com/article/4653322>

[Daneshyari.com](https://daneshyari.com)