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a b s t r a c t

Let C(n) denote the maximum number of induced copies of 5-
cycles in graphs on n vertices. For n large enough, we show that
C(n) = a · b · c · d · e + C(a) + C(b) + C(c) + C(d) + C(e), where
a + b + c + d + e = n and a, b, c, d, e are as equal as possible.

Moreover, for n a power of 5, we show that the unique graph on
n verticesmaximizing the number of induced 5-cycles is an iterated
blow-up of a 5-cycle.

The proof uses flag algebra computations and stabilitymethods.
© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In 1975, Pippenger and Golumbic [20] conjectured that in graphs themaximum induced density of
a k-cycle is k!/(kk − k) when k ≥ 5. In this paper we solve their conjecture for k = 5. In addition, we
also show that the extremal limit object is unique. The problem of maximizing the induced density of
C5 is also posted on http://flagmatic.org as one of the problems where the plain flag algebra method
was applied but failed to provide an exact result. It was also mentioned by Razborov [25].
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Fig. 1. The graph Ck×
5 maximizes the number of induced C5s.

Problems of maximizing the number of induced copies of a fixed small graphH have attracted a lot
of attention recently [8,14,29]. For a list of other results on this so called inducibility of small graphs
of order up to 5, see the work of Even-Zohar and Linial [8].

Denote the (k − 1)-times iterated blow-up of C5 by Ck×
5 , see Fig. 1. Let Gn be the set of all graphs

on n vertices, and denote by C(G) the number of induced copies of C5 in a graph G. Define

C(n) = max
G∈Gn

C(G).

We say a graph G ∈ Gn is extremal if C(G) = C(n). Notice that, since C5 is a self-complementary graph,
G is extremal if and only if its complement is extremal. If n is a power of 5, we can exactly determine
the unique extremal graph and thus C(n).

Theorem 1. For k ≥ 1, the unique extremal graph in G5k is C
k×
5 .

To prove Theorem 1, we first prove the following theorem. Note that this theorem is sufficient to
determine the unique limit object (the graphon) maximizing the density of induced copies of C5.

Theorem 2. There exists n0 such that for every n ≥ n0

C(n) = a · b · c · d · e + C(a) + C(b) + C(c) + C(d) + C(e),

where a + b + c + d + e = n and a, b, c, d, e are as equal as possible.
Moreover, if G ∈ Gn is an extremal graph, then V (G) can be partitioned into five sets X1, X2, X3, X4,

and X5 of sizes a, b, c, d and e respectively, such that for 1 ≤ i < j ≤ 5 and xi ∈ Xi, xj ∈ Xj, we have
xixj ∈ E(G) if and only if j − i ∈ {1, 4}.

In Section 2, we give a brief overview of our method, in Section 3 we prove Theorem 2, and in
Section 4 we prove Theorem 1.

2. Method and flag algebras

Our method relies on the theory of flag algebras developed by Razborov [21]. Flag algebras can be
used as a general tool to attack problems from extremal combinatorics. Flag algebras were used for a
wide range of problems, for example the Caccetta–Häggkvist conjecture [15,24], Turán-type problems
in graphs [7,11,13,19,22,26,27], 3-graphs [9,10] and hypercubes [1,3], extremal problems in a colored
environment [2,4,6], and also to problems in geometry [17] or extremal theory of permutations [5].
For more details on these applications, see a recent survey of Razborov [23].

A typical application of the so-called plain flag algebra method provides a bound on densities
of substructures. To get a good bound, true inequalities and equalities involving the densities of
substructures are combined with the help of semidefinite programming. This step is by now largely
automated, there is even an open source application called Flagmatic [29], which gives easy to check
certificates for the validity of this step. In some cases the bound is asymptotically sharp. Obtaining
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