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a b s t r a c t

The Morse–Hedlund Theorem states that a bi-infinite sequence η
in a finite alphabet is periodic if and only if there exists n ∈ N
such that the block complexity function Pη(n) satisfies Pη(n) ≤

n. In dimension two, Nivat conjectured that if there exist n, k ∈

N such that the n × k rectangular complexity Pη(n, k) satisfies
Pη(n, k) ≤ nk, then η is periodic. Sander and Tijdeman showed
that this holds for k ≤ 2. We generalize their result, showing that
Nivat’s Conjecture holds for k ≤ 3. Themethod involves translating
the combinatorial problem to a question about the nonexpansive
subspaces of a certainZ2 dynamical system, and then analyzing the
resulting system.

© 2015 Elsevier Ltd. All rights reserved.

1. Nivat’s conjecture for colorings of height 3

1.1. Background and statement of the theorem

The Morse–Hedlund Theorem [8] gives a classic relation between the periodicity of a bi-infinite
sequence taking values in a finite alphabet A and the complexity of the sequence. For higher
dimensional sequences η =


η(n⃗) : n⃗ ∈ Zd


with d ≥ 1 taking values in the finite alphabet A, a

possible generalization is the Nivat Conjecture [9]. To state this precisely, we define η : Zd
→ A to be

periodic if there exists m⃗ ∈ Zd with m⃗ ≠ 0⃗ such that η(n⃗ + m⃗) = η(n⃗) for all n⃗ ∈ Zd and define the
rectangular complexity Pη(n1, . . . , nd) to be the number of distinct n1 × · · · × nd rectangular colorings
that occur in η. Nivat conjectured that for d = 2, if there exist n, k ∈ N such that Pη(n, k) ≤ nk,
then η is periodic. This is a two dimensional phenomenon, as counterexamples for the corresponding
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statement in dimension d ≥ 3 were given in [11]. There are numerous partial results, including
for example [11,6,10] (see also related results in [1,3,5]). In [4] we showed that under the stronger
hypothesis that there exist n, k ∈ N such that Pη(n, k) ≤ nk/2, then η is periodic.

We prove that Nivat’s Conjecture holds for rectangular colorings of height at most 3:

Theorem 1.1. Suppose η : Z2
→ A, where A denotes a finite alphabet. Assume that there exists n ∈ N

such that Pη(n, 3) ≤ 3n. Then η is periodic.

If there exists n ∈ N such that Pη(n, 1) ≤ n, periodicity of η follows quickly from the
Morse–Hedlund Theorem [8]: each row is horizontally periodic of period at most n and so n! is an
upper bound for theminimal horizontal period of η. When there exists n ∈ N such that Pη(n, 2) ≤ 2n,
periodicity of η was established by Sander and Tijdeman [12]. The extension to colorings of height 3
is the main result of this article. By the obvious symmetry, the analogous result holds if there exists
n ∈ N such that Pη(3, n) ≤ 3n.

1.2. Generalized complexity functions

To study rectangular complexity, we need to consider the complexity of more general shapes.
As introduced by Sander and Tijdeman [11], if S ⊂ Z2 is a finite set, we define Pη(S) to be the
number of distinct colorings in η that can fill the shape S. For example, Pη(n, k) = Pη(Rn,k), where
Rn,k = {(x, y) ∈ Z2

: 0 ≤ x < n, 0 ≤ y < k}. Similar to methods introduced in [4], we find subsets of
Rn,3 (the generating sets) that can be used to study periodicity. Using the restrictive geometry imposed
by colorings of height 3, we derive stronger properties that allow us to prove periodicity only using
the complexity bound 3n, rather than 3n/2 as relied upon in [4].

1.3. Translation to dynamics

As in [4], we translate the problem to a dynamical one. We define a dynamical system associated
with η : Z2

→ A in a standard way: endow A with the discrete topology, X = AZ2
with the product

topology, and define the Z2-action by translations on X by (T u⃗η)(x⃗) := η(x⃗ + u⃗) for u⃗ ∈ Z2. With
respect to this topology, the maps T u⃗

: X → X are continuous. Let O(η) := {T u⃗η : u⃗ ∈ Z2
} denote the

Z2-orbit of η ∈ AZ2
and set Xη := O(η). When we refer to the dynamical system Xη , we implicitly

assume that thismeans the spaceXη endowedwith theZ2-action by the translations T u⃗, where u⃗ ∈ Z2.
Note that in general O(η) \ O(η) is nonempty.

The dynamical system Xη reflects the properties of η. An often used fact is that if F ⊂ Z2 is finite
and f ∈ Xη , then there exists u⃗ ∈ Z2 such that (T u⃗η)�F = f �F , where by ·�F wemean the restriction to
the region F . So, for example, if η satisfies some complexity bound, such as the existence of a finite set
S ⊂ Z2 satisfying Pη(S) ≤ N for some N ≥ 1, then every f ∈ Xη satisfies the same complexity bound.
Moreover, if η is periodic with some period vector, then every f ∈ Xη is also periodic with the same
period vector. Similarly, if u⃗ ∈ Z2 and F ⊂ Z2, there is a natural correspondence between a coloring
of the form (T−u⃗f )�F and a coloring f �F + u⃗.

Characterizing periodicity of η ∈ AZ2
amounts to studying properties of its orbit closure Xη . In

particular, note that η is doubly periodic if and only if it has two non-commensurate period vectors,
or equivalently Xη is finite.

1.4. Expansive and nonexpansive lines

Restricting a more general definition given by Boyle and Lind [2] to a dynamical system X with a
continuous Z2-action (T u⃗

: u⃗ ∈ R2) on X , we say that a line ℓ ⊂ R2 is an expansive line if there exist
r > 0 and δ > 0 such that whenever f , g ∈ X satisfy d(T u⃗f , T u⃗g) < δ for all u⃗ ∈ Z2 with d(u⃗, ℓ) < r ,
then f = g . Any line that is not expansive is called a nonexpansive line.
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